Report Number: R079-24

MISO Affected System Study on SPP DISIS 2020-001 Phase 2 Projects

Prepared for

MISO

Submitted by:

Yaming Zhu, Technical Manager, Principal Consultant Cesar Marzoa-Montalvo, Senior Consultant William Wang, Staff Consultant Hani Gharavi Ahangar, Senior Consultant Juhee Yeo, Consultant

04/01/2024

Siemens PTI Project Number: 62OT-002472-B-1

Revision History

Date	Rev.	Description
04/01/2024	Α	Initial draft

i

Contents

Legal N	lotice		vi
Executi	ive Sum	nmary	viii
1.1		t List	
	1.1.1	Phase 2 Study Projects in MISO South	viii
	1.1.2	Phase 2 Study Projects in MISO West	ix
1.2	MISO	AFSIS Study Summary	
	1.2.1	Study Summary for Study Projects in MISO South	xi
	1.2.2	Study Summary for Study Projects in MISO West	xii
1.3	Total N	/IISO AFSIS Network Upgrades	xiii
	1.3.1	Total MISO AFSIS Network Upgrades for Study Projects in MISO South	xiii
	1.3.2	Total MISO AFSIS Network Upgrades for Study Projects in MISO West	xiv
1.4	Per Pr	oject Summary	xvi
	1.4.1	GEN-2020-021 Summary	xvi
Model I	Develop	ment and Study Criteria	1
1.1	MISO	South Model Development and Study Criteria	1
	1.1.1	MISO South Region AFSIS Model Development	1
	1.1.2	MISO South Region AFSIS Contingency Criteria	2
	1.1.3	MISO South Region AFSIS Monitored Elements	2
1.2	MISO '	West Model Development and Study Criteria	3
	1.2.1	MISO West Region AFSIS Model Development	3
	1.2.2	MISO West Region AFSIS Contingency Criteria	5
	1.2.3	MISO West Region AFSIS Monitored Elements	5
1.3	MISO	Steady State Performance Criteria	7
Section	1 2 – MIS	SO South Affected System Study	2-1
2.1	MISO	South AFSIS Thermal and Voltage Analysis	2-1
	2.1.1	MISO Contingency Analysis for 2025 Summer Peak Condition	2-1
	2.1.2	MISO Contingency Analysis for 2025 Summer Shoulder Condition	2-2
	2.1.3	Summary of MISO South AFSIS Steady State Analysis	2-2
2.2	MISO	South AFSIS Transient Stability Analysis	2-2

** DR/	\FT **		
	2.2.1	Procedure	2-2
	2.2.2	Model Development	2-3
	2.2.3	Disturbance Criteria	2-4
	2.2.4	Performance Criteria	2-4
	2.2.5	Summer Peak Stability Results	2-4
	2.2.6	Stability Network Upgrades Identified in Summer Peak	2-5
	2.2.7	Summer Shoulder Stability Results	2-5
	2.2.8	Stability Network Upgrades Identified in Summer Shoulder	2-6
	2.2.9	Summary of MISO South AFSIS Transient Stability Analysis	2-6
Section	1 3 – MIS	O West Affected System Study	3-1
3.1	MISO V	Nest AFSIS Thermal and Voltage Analysis	3-1
	3.1.1	MISO Contingency Analysis for 2025 Summer Peak Condition	3-1
	3.1.2	MISO Contingency Analysis for 2025 Summer Shoulder Condition	3-2
	3.1.3	Summary of MISO West AFSIS Steady State Analysis	3-4
3.2	MISO V	West AFSIS Transient Stability Analysis	3-4
	3.2.1	Procedure	3-5
	3.2.2	Model Development	3-5
	3.2.3	Disturbance Criteria	3-7
	3.2.4	Performance Criteria	3-8
	3.2.5	Summer Peak Stability Results	3-8
	3.2.6	Stability Network Upgrades Identified in Summer Peak	3-10
	3.2.7	Summer Shoulder Stability Analysis	3-10
	3.2.8	Summer Shoulder Stability Results	3-10
	3.2.9	Stability Constraints Identified in Summer Shoulder	3-12
	3.2.10	Summary of MISO West AFSIS Transient Stability Analysis	3-12
Section	1 4 – Cor	ntingent Facilities	4-1
4.1	Conting	gent Facilities in MISO South	4-1
4.2	Conting	gent Facilities in MISO West	4-1
Section	1 5 – Net	work Upgrades and Cost Allocation	5-1
5.1	Cost As	ssumptions for Network Upgrades	5-1
5.2	Cost Al	location Methodology	5-1

**		-	•	F	×	·	ų,
TT	.,	ĸ	Д	-		т	т

5.3		Network Upgrades Required for the SPP DISIS 2020-001 Phase y Projects	5-1
	5.3.1	AFSIS Network Upgrades Required for the SPP Study Projects in MISO South	5-1
	5.3.2	AFSIS Network Upgrades Required for the SPP Study Projects in MISO West	5-2
		MISO South AFSIS Model Development for Steady-State	A-1
A.1	Recen	tly Withdrawn Prior Queued Projects	A-1
A.2	SPP P	rior Queued Generation Projects	A-3
A.3	AECI F	Prior Queued Generation Projects	A-5
A.4	Remov	ved Recently Retired MISO Generation	A-6
A.5	MISO	North for Power Balance	A-9
A.6	MISO	South for Power Balance	A-10
A.7	SPP M	farket for Power Balance	A-11
A.8	AECI f	or Power Balance	A-12
A.9	Contin	gency Files used in MISO South AFSIS Analysis	A-13
		MISO West AFSIS Model Development for Steady-State nalysis	B-1
B.1	Recen	tly Withdrawn Prior Queued Projects	B-1
B.2	SPP P	rior Queued Generation Projects	B-3
B.3	MPC F	Prior Queued Generation Projects	B-7
B.4	AECI F	Prior Queued Generation Projects	B-8
B.5	Remov	ved Recently Retired MISO Generation	B-9
B.6	Netwo	rk Upgrades Required for Prior Queued Projects	B-11
B.7	Contin	gency Files used in MISO West AFSIS Analysis	B-13
Append Results		MISO South AFSIS Thermal and Voltage Analysis	C-1
C.1		Summer Peak (SPK) MISO South AFSIS Constraints	
C.2	2025 \$	Summer Shoulder (SH) MISO South AFSIS Constraints	C-3
Append	dix D – I	MISO South AFSIS Stability Analysis Results	D-1
D.1	2025 5	Summer Peak (SPK) MISO South AFSIS Stability Results	D-1
D 2	2025	Summer Shoulder MISO South AFSIS Stability Results	D-4

Append	ix E – MISO West AFSIS Thermal and Voltage Analysis Results	E-1
E.1	2025 Summer Peak (SPK) MISO West AFSIS Constraints	E-1
E.2	2025 Summer Shoulder (SH) MISO West AFSIS Constraints	E-3
Append	ix F – MISO West AFSIS Stability Analysis Results	F-1
F.1	2025 Summer Peak (SPK) MISO West AFSIS Stability Results	F-1
F.2	2025 Summer Shoulder MISO West AFSIS Stability Results	F-4
Append	ix G – 2025 Cost Allocation Results	G-1
G.1	Distribution Factor (DF), Voltage Impact, and MW Contribution Results for Cost Allocation in 2025	G-1
G.2	Cost Allocation Details	G-3

Legal Notice

This document was prepared by Siemens Industry, Inc., Siemens Power Technologies International (Siemens PTI), solely for the benefit of MISO. Neither Siemens PTI, nor parent corporation or its or their affiliates, nor MISO, nor any person acting in their behalf (a) makes any warranty, expressed or implied, with respect to the use of any information or methods disclosed in this document; or (b) assumes any liability with respect to the use of any information or methods disclosed in this document.

Any recipient of this document, by their acceptance or use of this document, releases Siemens PTI, its parent corporation and its and their affiliates, and MISO from any liability for direct, indirect, consequential or special loss or damage whether arising in contract, warranty, express or implied, tort or otherwise, and irrespective of fault, negligence, and strict liability.

This page intentionally left blank.

Executive Summary

This report presents the results of an Affected System Impact Study (AFSIS) on MISO transmission system performed for Phase 2 generator interconnection requests in the Southwest Power Pool (SPP) queue 2020-001 cycle (Study Projects). The AFSIS results are summarized below.

1.1 Project List

Because of a wide geographical region of the DISIS 2020-001 Phase 2 Study Projects, the MISO AFSIS was divided into two groups to identify the impacts on the MISO West and MISO South regions.

1.1.1 Phase 2 Study Projects in MISO South

The DISIS 2020-001 Phase 2 Study Projects in MISO South region (Study Projects in MISO South) have 21 generation projects with combined energy of 5982.1 MW, which are listed in Table ES-1.

Table ES-1: DISIS 2020-001 Phase 2 Study Projects in MISO South

Project #	Town / County	State	Point of Interconnection	Fuel Type	Pmax	SH (MW)	SPK (MW)
GEN-2020-009	Cotton	ОК	Lawton East Side-Oklaunion 345 kV	Solar / Storage	300	300	300
GEN-2020-010	Mutual	ОК	Seiling-Taloga 138 kV	Solar / Storage	140	140	140
GEN-2020-012	Headrick	ОК	Snyder–Altus Jct. 138 kV	Solar / Storage	113	113	113
GEN-2020-015	Johnston	ОК	Johnston County 345 kV	Solar	104	0	104
GEN-2020-016	Tillman	ОК	Snyder SW-Cache 138 kV	Wind	202	202	31.512
GEN-2020-020	McCurtain	ОК	Northwest Texarkana-Valliant 345 kV	Solar / Storage	201.6	100	201.6
GEN-2020-023	Carrier	ОК	Woodring 345 kV	Storage	202	202	202
GEN-2020-052	Labette	KS	Neosho-Delaware 345 kV	Wind	250.999	250.999	39.156
GEN-2020-054	Bowie	TX	Lydia 345 kV	Solar	298	0	298
GEN-2020-059	Lovington	NM	Tuco-Yoakum-Hobbs 345 kV	Solar / Storage	259	259	259
GEN-2020-060	Lubbock	TX	Lubbock East 230 kV	Storage	200	200	200
GEN-2020-062	Curry	NM	Oasis 230 kV	Solar	256	0	256
GEN-2020-065	Gaines	NM	Hobbs-Andrews 345 kV	СС	1003	501.5	1003

Project #	Town / County	State	Point of Interconnection	Fuel Type	Pmax	SH (MW)	SPK (MW)
GEN-2020-067	Terry, Hockley	TX	Tuco-Yoakum 345 kV	Wind	352.5	352.5	54.99
GEN-2020-068	Terry, Hockley	TX	Tuco-Yoakum 345 kV	Solar	400	0	400
GEN-2020-074	Carter	ОК	Lawton-Sunnyside 345 kV	Storage	200	200	200
GEN-2020-075	Comanche	ОК	Cimmarron-Lawton 345 kV	Storage	200	200	200
GEN-2020-081	Rusk	TX	Tenaska SS 345 kV	Storage	200	200	200
GEN-2020-085	Carter	ОК	Lawton-Sunnyside 345 kV	Solar	500	0	500
GEN-2020-087	Comanche	ОК	Cimmarron-Lawton 345 kV	Solar	500	0	500
GEN-2020-092	Mayes	ОК	Pryor Junction-Midwest Carbide 138 kV	Solar	100	0	100

1.1.2 Phase 2 Study Projects in MISO West

The DISIS 2020-001 Phase 2 Study Projects in MISO West region (Study Projects in MISO West) have 44 generation projects with combined energy of 8335.4 MW, which are listed in Table ES-2.

Table ES-2: DISIS 2020-001 Phase 2 Study Projects in MISO West

Project #	Town / County	State	Point of Interconnection	Fuel Type	Pmax	SH (MW)	SPK (MW)
ASGI-2020-001	Saline	МО	South Waverly 69 kV	Solar / Storage	35	10.00	35.00
ASGI-2020-003	Carroll	МО	Carrollton 161 kV	Solar / Storage	35	10.00	35.00
GEN-2020-001	Cheyenne	NE	Sidney 345 kV	Solar	200	0.00	200.00
GEN-2020-002	Yutan	NE	Sub 6846 69 kV	Solar	81	0.00	81.00
GEN-2020-006	Bowman	ND	Bowman 230 kV	Solar	250	0.00	250.00
GEN-2020-007	Linn, Bates	KS	Evergy La Cygne-Wolf Creek 345 kV	Solar / Storage	650	500.00	650.00
GEN-2020-008	Stevens	KS	Corporation Carpenter 345 kV	Solar / Storage	250	125.00	250.00
GEN-2020-011	Funk	NE	Axtell-Sweetwater 345 kV	Solar / Storage	320	320.00	320.00
GEN-2020-013	Orleans	NE	Orleans-Holdrege 115 kV	Solar / Storage	214.98	214.98	214.98
GEN-2020-014	Alexander	ND	Lonesome Creek 115 kV	CT Gas	45	0.00	45.00

Project #	Town / County	State	Point of Interconnection	Fuel Type	Pmax	SH (MW)	SPK (MW)
GEN-2020-021	Sioux	ND	LeLand Olds-Chapelle Creek 345 kV	Wind	235	235.00	36.66
GEN-2020-025	Sarpy	NE	Sub 1363 161 kV	CT Gas	255	0.00	255.00
GEN-2020-027	Sarpy	NE	S1281-S1362 161 kV (S1363)	Solar / Storage	50	42.00	50.00
GEN-2020-028	Sarpy	NE	Sub 1363 161 kV	CT Gas	255	0.00	255.00
GEN-2020-030	Sarpy	NE	S1281-S1362 161 kV (S1363)	Solar / Storage	50	36.00	50.00
GEN-2020-031	Sarpy	NE	Sub 1363 161 kV	CT Gas	303	0.00	303.00
GEN-2020-033	Sarpy	NE	S1281-S1362 161 kV (S1363)	Solar / Storage	50	39.00	50.00
GEN-2020-036	Plattsmouth	NE	Sub 3740 345 kV	Solar / Storage	303	289.00	303.00
GEN-2020-038	Plattsmouth	NE	Sub 3740 345 kV	CT Gas	303	0.00	303.00
GEN-2020-043	Douglas	NE	Sub 1209-Sub 1252 161 kV	Reciprocating Engine	56.52	0.00	56.52
GEN-2020-044	Douglas	NE	Sub 1209-Sub 1252 161 kV	Reciprocating Engine	56.52	0.00	56.52
GEN-2020-045	Douglas	NE	Sub 1209-Sub 1252 161 kV	Reciprocating Engine	56.52	0.00	56.52
GEN-2020-056	Russell	KS	Russell 115 kV	Solar	20	0.00	20.00
GEN-2020-057	Garner	KS	Atlantic 345 kV	Storage	424.5	424.50	424.50
GEN-2020-058	Garner	KS	Evergy Atlantic 345 kV	Solar	424.5	0.00	424.50
GEN-2020-061	Pleasant Hill	МО	Pleasant Hill 345/161/69 kV	CC Gas	29	14.50	29.00
GEN-2020-064	Joplin	МО	4544 Stateline CC 161 kV	CT Gas	64	0.00	64.00
GEN-2020-069	Cherry	NE	Cody-Valentine 115 kV	Wind	52.85	52.85	8.24
GEN-2020-070	Osborne	KS	Postrock-Axtell 345 kV	Wind	255	255.00	39.78
GEN-2020-071	Osage, Shawnee	KS	Swissvale-Morris 230 kV	Wind	252	252.00	39.31
GEN-2020-072	Windsor	МО	Windsor-AEC Sedalia 161 kV	Solar / Storage	150	150.00	150.00
GEN-2020-073	Franklin	KS	SE Ottawa-Pleasant Valley 161 kV	Solar / Storage	150	150.00	150.00
GEN-2020-076	Butler	KS	Benton-Wolf Creek 345 kV	Storage	200	200.00	200.00
GEN-2020-077	Thayer	NE	North Hebron-Fairbury 115 kV	Wind	151.2	151.20	23.59
GEN-2020-078	Washington	NE	Sub 1226-Sub 1237 161 kV	Solar	100	0.00	100.00

Project #	Town / County	State	Point of Interconnection	Fuel Type	Pmax	SH (MW)	SPK (MW)
GEN-2020-079	Cherokee	KS	Riverton-Neosho 161 kV	Solar / Storage	225	225.00	225.00
GEN-2020-083	Fairview	MT	Fairview 115 kV	Solar / Storage	74.5	24.50	74.50
GEN-2020-084	Burt	NE	Raun-Fort Calhoun 345 kV	Solar	350	0.00	350.00
GEN-2020-086	El Dorado	KS	Benton-Wolf Creek 345 kV	Solar	500	0.00	500.00
GEN-2020-088	Jasper	МО	La Russell 161 kV	Solar	150	0.00	150.00
GEN-2020-089	Allen, Bourbon	KS	Dakota 161 kV	Solar	104	0.00	104.00
GEN-2020-090	Bourbon	KS	Wolf Creek-Blackberry 345 kV	Solar	204.3	0.00	204.30
GEN-2020-091	McKenzie	ND	Patent Gate 345 kV	Solar	150	0.00	150.00
GEN-2020-094	Syracuse	NE	Neb. City-103rd & Rokeby 345 kV	Solar	250	0.00	250.00

1.2 MISO AFSIS Study Summary

1.2.1 Study Summary for Study Projects in MISO South

Summer peak steady state models and stability packages used for MISO AFSIS on SPP DISIS 2020-001 Study Projects in MISO South were developed from the models used in MISO South AFSIS on AECI GI-105 project, which were originally developed from MISO DPP 2020 South Phase 3 System Impact Study (SIS) models and stability packages.

Summer shoulder steady state models and stability packages used for MISO AFSIS on SPP DISIS 2020-001 Study Projects in MISO South were developed from the Phase 3 models used in MISO South AFSIS on SPP DISIS 18-002 / 19-001 Cycle, which were originally developed from MISO DPP 2020 South Phase 3 System Impact Study (SIS) models and stability packages.

Steady state thermal and voltage analysis was performed to identify any thermal and voltage violations in the MISO South region. No thermal or voltage constraints were identified in the 2025 summer peak (SPK) and summer shoulder (SH) scenarios. No thermal or voltage MISO AFSIS Network Upgrades (NUs) were identified in the steady state analysis.

Transient stability analysis was performed to identify any transient stability violations caused by the SPP Study Projects in MISO South. No transient stability constraints were identified in the 2025 summer peak and summer shoulder scenarios. No MISO AFSIS stability NUs were identified in the transient stability analysis.

A short circuit screening analysis was conducted by comparing three phase fault currents in the benchmark and study cases for the SPP Study Projects in MISO South. Based on the screening results, MISO Transmission Owners do not plan to conduct additional studies.

No contingent MTEP facilities were identified for the SPP Study Projects in MISO South.

In conclusion, SPP DISIS 2020-001 Study Projects in MISO South are not responsible for any MISO AFSIS NUs.

1.2.2 Study Summary for Study Projects in MISO West

Summer peak steady state models and stability packages used for MISO AFSIS on SPP DISIS 2020-001 Study Projects in MISO West were developed from the models used in MISO West AFSIS on AECI GI-102 project, which were originally developed from MISO DPP 2020 West Phase 3 System Impact Study (SIS) models and stability packages.

Summer shoulder steady state models and stability packages used for MISO AFSIS on SPP DISIS 2020-001 Study Projects in MISO West were developed from the Phase 3 models used in MISO West AFSIS on SPP DISIS 18-002 / 19-001 Cycle, which were originally developed from MISO DPP 2020 West Phase 3 System Impact Study (SIS) models and stability packages.

Steady state thermal and voltage analysis was performed to identify any thermal and voltage violations in MISO West region. MISO AFSIS Thermal Network Upgrades identified in the summer shoulder scenario for steady state analysis are listed in Table ES-3. OTP intends to self fund the upgrades. No MISO AFSIS voltage Network Upgrades were identified in the summer shoulder scenario.

No MISO AFSIS thermal or voltage Network Upgrades (NUs) were identified in the summer peak scenario.

Table ES-3: AFSIS Thermal Network Upgrades Identified in the Summer Shoulder Scenario for SPP Study Projects in MISO West

Constraint	Owner	Mitigation	Cost (\$)
New Sub - Buffalo 345 kV	OTP MPC	OTP: OTP equipment is sufficient, MPC conductor is limiter. \$0 MPC: NU will be determined in MPC study	\$0
Sheyenne-Lake Park 230 kV	XEL MPC OTP	OTP: Prior queued upgrade will increase rating to 353.7 MVA (MPC-04300). Additional structure replacements required. \$400,000	\$400,000
Audubon-Lake Park 230 kV	ОТР	Prior queued upgrade will increase rating to 479.2 / 527.1 MVA (MPC-04300). No upgrade necessary.	\$0

Transient stability analysis was performed to identify any transient stability violations caused by the SPP Study Projects in MISO West. No transient stability constraints were identified in MISO Affected System in the 2025 summer peak and summer shoulder scenarios. No MISO AFSIS stability NUs were identified in the transient stability analysis.

A short circuit screening analysis was conducted by comparing three phase fault currents in the benchmark and study cases for the SPP Study Projects in MISO West. Based on the screening results, MISO Transmission Owners do not plan to conduct additional studies. Contingent facilities were identified. Details are in Section 4.2.

It should be noted that a restudy may be required if significant changes to the study assumptions occur, including but not limited to, interconnection request withdrawals and/or changes to higher-queued Network Upgrades included in the Base Case.

For the study projects that are required to mitigate thermal violations, the projects should not be allowed to come into service before the required Network Upgrades are in service, unless a MISO restudy removes the mitigation requirement from the project, or an interim limit is provided to the project through MISO Annual ERIS process. For projects that are required to mitigate voltage violations, no injection is allowed until the allocated upgrades and contingent facilities are in service.

1.3 Total MISO AFSIS Network Upgrades

1.3.1 Total MISO AFSIS Network Upgrades for Study Projects in MISO South

The total cost of MISO AFSIS Network Upgrades required for the Study Projects in MISO South is listed in Table ES-4. No MISO AFSIS Network Upgrades were identified for the SPP DISIS 2020-001 Study Projects in MISO South.

Table ES-4: Total Cost of MISO AFSIS Network Upgrades for SPP DISIS 2020-001 Study Projects in MISO South

	Network Upgrades (\$)			
Project Num	MISO Thermal & Voltage	Transient Stability	Short Circuit	Total Network Upgrade Cost (\$)
GEN-2020-009	\$0	\$0	\$0	\$0
GEN-2020-010	\$0	\$0	\$0	\$0
GEN-2020-012	\$0	\$0	\$0	\$0
GEN-2020-015	\$0	\$0	\$0	\$0
GEN-2020-016	\$0	\$0	\$0	\$0
GEN-2020-020	\$0	\$0	\$0	\$0
GEN-2020-023	\$0	\$0	\$0	\$0
GEN-2020-052	\$0	\$0	\$0	\$0
GEN-2020-054	\$0	\$0	\$0	\$0
GEN-2020-059	\$0	\$0	\$0	\$0
GEN-2020-060	\$0	\$0	\$0	\$0
GEN-2020-062	\$0	\$0	\$0	\$0
GEN-2020-065	\$0	\$0	\$0	\$0
GEN-2020-067	\$0	\$0	\$0	\$0
GEN-2020-068	\$0	\$0	\$0	\$0

	Netw			
Project Num	MISO Thermal & Voltage	Transient Stability	Short Circuit	Total Network Upgrade Cost (\$)
GEN-2020-074	\$0	\$0	\$0	\$0
GEN-2020-075	\$0	\$0	\$0	\$0
GEN-2020-081	\$0	\$0	\$0	\$0
GEN-2020-085	\$0	\$0	\$0	\$0
GEN-2020-087	\$0	\$0	\$0	\$0
GEN-2020-092	\$0	\$0	\$0	\$0
Total (\$)	\$0	\$0	\$0	\$0

1.3.2 Total MISO AFSIS Network Upgrades for Study Projects in MISO West

The total cost of MISO AFSIS Network Upgrades required for the Study Projects in MISO West is listed in Table ES-5. The costs for Network Upgrades are planning level estimates and subject to be revised in the facility studies.

Table ES-5: Total Cost of MISO AFSIS Network Upgrades for SPP Study Projects in MISO West

	Network Upgrades (\$)			
Project Num	MISO Thermal & Voltage	Transient Stability	Short Circuit	Total Network Upgrade Cost (\$)
ASGI-2020-001	\$0	\$0	\$0	\$0
ASGI-2020-003	\$0	\$0	\$0	\$0
GEN-2020-001	\$0	\$0	\$0	\$0
GEN-2020-002	\$0	\$0	\$0	\$0
GEN-2020-006	\$0	\$0	\$0	\$0
GEN-2020-007	\$0	\$0	\$0	\$0
GEN-2020-008	\$0	\$0	\$0	\$0
GEN-2020-011	\$0	\$0	\$0	\$0
GEN-2020-013	\$0	\$0	\$0	\$0
GEN-2020-014	\$0	\$0	\$0	\$0
GEN-2020-021	\$400,000	\$0	\$0	\$400,000
GEN-2020-025	\$0	\$0	\$0	\$0
GEN-2020-027	\$0	\$0	\$0	\$0
GEN-2020-028	\$0	\$0	\$0	\$0
GEN-2020-030	\$0	\$0	\$0	\$0

	Netw	ork Upgrades (\$)	T-(-IN-(I
Project Num	MISO Thermal & Voltage	Transient Stability	Short Circuit	Total Network Upgrade Cost (\$)
GEN-2020-031	\$0	\$0	\$0	\$0
GEN-2020-033	\$0	\$0	\$0	\$0
GEN-2020-036	\$0	\$0	\$0	\$0
GEN-2020-038	\$0	\$0	\$0	\$0
GEN-2020-043	\$0	\$0	\$0	\$0
GEN-2020-044	\$0	\$0	\$0	\$0
GEN-2020-045	\$0	\$0	\$0	\$0
GEN-2020-056	\$0	\$0	\$0	\$0
GEN-2020-057	\$0	\$0	\$0	\$0
GEN-2020-058	\$0	\$0	\$0	\$0
GEN-2020-061	\$0	\$0	\$0	\$0
GEN-2020-064	\$0	\$0	\$0	\$0
GEN-2020-069	\$0	\$0	\$0	\$0
GEN-2020-070	\$0	\$0	\$0	\$0
GEN-2020-071	\$0	\$0	\$0	\$0
GEN-2020-072	\$0	\$0	\$0	\$0
GEN-2020-073	\$0	\$0	\$0	\$0
GEN-2020-076	\$0	\$0	\$0	\$0
GEN-2020-077	\$0	\$0	\$0	\$0
GEN-2020-078	\$0	\$0	\$0	\$0
GEN-2020-079	\$0	\$0	\$0	\$0
GEN-2020-083	\$0	\$0	\$0	\$0
GEN-2020-084	\$0	\$0	\$0	\$0
GEN-2020-086	\$0	\$0	\$0	\$0
GEN-2020-088	\$0	\$0	\$0	\$0
GEN-2020-089	\$0	\$0	\$0	\$0
GEN-2020-090	\$0	\$0	\$0	\$0
GEN-2020-091	\$0	\$0	\$0	\$0
GEN-2020-094	\$0	\$0	\$0	\$0
Total (\$)	\$400,000	\$0	\$0	\$400,000

1.4 Per Project Summary

This section provides estimated cost of MISO AFSIS Network Upgrades on a per project basis for the Study Projects in SPP DISIS 2020-001 cycle.

The following projects do not have MISO AFSIS Network Upgrade cost allocated to the projects:

- SPP Study Projects in MISO South:
 - GEN-2020-009, GEN-2020-010, GEN-2020-012, GEN-2020-015, GEN-2020-016, GEN-2020-020, GEN-2020-023, GEN-2020-052, GEN-2020-054, GEN-2020-059, GEN-2020-060, GEN-2020-062, GEN-2020-065, GEN-2020-067, GEN-2020-068, GEN-2020-074, GEN-2020-075, GEN-2020-081, GEN-2020-085, GEN-2020-087, GEN-2020-092.
- SPP Study Projects in MISO West:
 - ASGI-2020-001, ASGI-2020-003, GEN-2020-001, GEN-2020-002, GEN-2020-006, GEN-2020-007, GEN-2020-008, GEN-2020-011, GEN-2020-013, GEN-2020-014, GEN-2020-025, GEN-2020-027, GEN-2020-028, GEN-2020-030, GEN-2020-031, GEN-2020-033, GEN-2020-036, GEN-2020-038, GEN-2020-043, GEN-2020-044, GEN-2020-045, GEN-2020-056, GEN-2020-057, GEN-2020-058, GEN-2020-061, GEN-2020-064, GEN-2020-069, GEN-2020-070, GEN-2020-071, GEN-2020-072, GEN-2020-073, GEN-2020-076, GEN-2020-077, GEN-2020-078, GEN-2020-079, GEN-2020-083, GEN-2020-084, GEN-2020-086, GEN-2020-088, GEN-2020-089, GEN-2020-090, GEN-2020-091, GEN-2020-094.

MISO AFSIS Network Upgrade costs are allocated to the below projects:

1.4.1 **GEN-2020-021 Summary**

Network Upgrade	Owner	Cost	GEN-2020-021	NUs Type
Sheyenne-Lake Park 230 kV	XEL MPC OTP	\$400,000	\$400,000	SH
Total Cost Per Project			\$400,000	

It should be noted that a restudy may be required should significant changes to the study assumptions occur, including but not limited to, interconnection request withdrawals and/or changes to higher-queued Network Upgrades included in the Base Case.

This page intentionally left blank.

Model Development and Study Criteria

1.1 MISO South Model Development and Study Criteria

1.1.1 MISO South Region AFSIS Model Development

Summer peak steady state models and stability packages used for MISO AFSIS on SPP DISIS 2020-001 Study Projects in MISO South were developed from the models used in MISO South AFSIS on AECI GI-105 project, which were originally developed from MISO DPP 2020 South Phase 3 System Impact Study (SIS) models and stability packages.

Summer shoulder steady state models and stability packages used for MISO AFSIS on SPP DISIS 2020-001 Study Projects in MISO South were developed from the Phase 3 models used in MISO South AFSIS on SPP DISIS 18-002 / 19-001 Cycle, which were originally developed from MISO DPP 2020 South Phase 3 System Impact Study (SIS) models and stability packages.

The starting models used for developing MISO South AFSIS models on DISIS 2020-001 Study are listed below:

- 2025 summer peak model: AECI-GI-105 AFSIS-2025SUM-Ph3-Study 230622.sav
- 2025 summer shoulder model: SPP-DISIS-South_AFSIS-Ph3-2025SH90-Study_231030.sav

1.1.1.1 MISO South AFSIS Benchmark Cases

The benchmark cases for the MISO South AFSIS study were created as follows:

- Removed recently withdrawn MISO South prior queued generation projects (Table A-1). Power mismatch was balanced by scaling generation in the MISO South (Table A-11).
- Removed recently withdrawn MISO Central prior queued generation projects (Table A-2). Power mismatch was balanced by scaling generation in the MISO North (Table A-10).
- Removed recently withdrawn SPP prior queued generation projects (Table A-3). Power mismatch was balanced by scaling generation in SPP market (Table A-12) based on the load-ratio share of the Transmission Owner (TO) power flow modeling areas.
- Removed several withdrawn generation projects in DISIS 18-002 / 19-001 cycle, which are listed in Table A-4. Power mismatch was balanced by scaling generation in SPP market (Table A-12) based on the load-ratio share of the TO power flow modeling areas.

- SPP prior queued generation projects (Table A-5) close to MISO South were modeled. SPP DISIS 18-002 / 19-001 generation projects in MISO South (Table A-6) were also updated and dispatched.
- AECI prior queued generation projects (Table A-7) were modeled. Power mismatch was balanced by scaling generation in AECI (Table A-13).
- Removed recently retired MISO generation in MISO South area. These recently retired MISO South generation are listed in Table A-8. Power mismatch was balanced by scaling generation in the MISO South (Table A-11).
- Removed recently retired MISO generation in MISO Central area. These recently retired generation projects in MISO Central are listed in Table A-8. Power mismatch was balanced by scaling generation in the MISO North (Table A-10).
- Turned off MISO generation projects in DPP 2020 Central area. Power mismatch was balanced by scaling generation in the MISO North (Table A-10).
- Added the SPP Study Projects with offline status in DISIS 2020-001 cycles close to MISO South. The SPP Study Projects in MISO South are listed in Table ES-1.

1.1.1.2 MISO South AFSIS Study Cases

Summer peak (SPK) study case was created by dispatching the Study Projects in MISO South at the specified summer peak level from the benchmark case.

Summer shoulder (SH) study case was created by dispatching the Study Projects in MISO South at the specified summer shoulder level from the benchmark case.

Generation in the SPP market was used for power balance, where SPP generation was scaled based on the load-ratio share of the TO power flow modeling areas.

Both study and benchmark power flow cases were solved with transformer tap adjustment enabled, area interchange disabled, phase shifter adjustment enabled and switched shunt adjustment enabled.

1.1.2 MISO South Region AFSIS Contingency Criteria

The following contingencies were considered in the MISO South AFSIS analysis:

- NERC Category P0 (system intact no contingencies)
- NERC Category P1 contingencies
 - Single element outages, at buses with a nominal voltage of 60 kV and above.
 - Multiple-element NERC Category P1 contingencies.
 - o NERC Category P2, P4, P5, P7 contingencies.

The detailed list of contingency files is in Appendix A.9

For all contingency and post-disturbance analyses, cases were solved with transformer tap adjustment enabled, area interchange adjustment disabled, phase shifter adjustment disabled (fixed) and switched shunt adjustment enabled.

1.1.3 MISO South Region AFSIS Monitored Elements

The MISO South AFSIS study area is defined in Table 1-1. Facilities in the study area were monitored for system intact and contingency conditions. Under NERC category P0 conditions (system intact), branches were monitored for loading above the normal (PSS[®]E rate A)

rating. Under NERC category P1-P7 conditions, branches were monitored for loading as shown in the column labeled "Post-Disturbance Thermal Limits".

Table 1-1: MISO South AFSIS Monitored Elements

	Thermal Limits ¹		Voltage Limits ²		
Owner / Area	Pre-Disturbance	Post-Disturbance	Pre-Disturbance	Post-Disturbance	
EES	100% of Rate A	100% of Rate B	1.05/0.975/0.95	1.05/0.95/0.92/0.90	
CLECO	100% of Rate A	100% of Rate B	1.05/0.95	1.10/0.90	
SMEPA	100% of Rate A	100% of Rate B	1.05/0.95	1.05/0.90	
LAFA	100% of Rate A	100% of Rate B	1.05/0.95	1.05/0.90	
LAGN	100% of Rate A	100% of Rate B	1.05/0.975/0.95	1.05/0.95/0.92	
LEPA	100% of Rate A	100% of Rate B	1.05/0.975/0.95	1.05/0.95/0.92	

Notes

- 1: PSS®E Rate A, Rate B or Rate C
- 2: Limits dependent on nominal bus voltage

1.2 MISO West Model Development and Study Criteria

1.2.1 MISO West Region AFSIS Model Development

Summer peak steady state models and stability packages used for MISO AFSIS on SPP DISIS 2020-001 Study Projects in MISO West were developed from the models used in MISO West AFSIS on AECI GI-102 project, which were originally developed from MISO DPP 2020 West Phase 3 System Impact Study (SIS) models and stability packages.

Summer shoulder steady state models and stability packages used for MISO AFSIS on SPP DISIS 2020-001 Study Projects in MISO West were developed from the Phase 3 models used in MISO West AFSIS on SPP DISIS 18-002 / 19-001 Cycle, which were originally developed from MISO DPP 2020 West Phase 3 System Impact Study (SIS) models and stability packages.

The starting models used for developing MISO West AFSIS models on DISIS 2020-001 Study are listed below:

- 2025 summer peak model: AECI-GI-102_AFSIS_West-2025SUM-Ph3-Study_230908.sav
- 2025 summer shoulder model: SPP DISIS-West_AFSIS-Ph3-2025SH90-Study_231030.sav

1.2.1.1 MISO West AFSIS Benchmark Cases

The benchmark cases for the MISO West AFSIS study were created as follows:

- Removed recently withdrawn MISO West and Central prior queued generation projects (Table B-1). Power mismatch was balanced by scaling generation in the MISO North (Table A-10).
- Removed recently withdrawn SPP prior queued generation projects (Table B-2).
 Power mismatch was balanced by scaling generation in SPP market (Table A-12) based on the load-ratio share of the TO power flow modeling areas.
- Removed several withdrawn generation projects in DISIS 18-002 / 19-001 cycle, which are listed in Table B-3. Power mismatch was balanced by scaling generation in SPP market (Table A-12) based on the load-ratio share of the TO power flow modeling areas.
- SPP prior queued generation projects (Table B-4) close to MISO West were modeled. SPP DISIS 18-002 / 19-001 generation projects in MISO West (Table B-5) were also updated and dispatched.
- MPC prior queued generation projects (Table B-6) were modeled. Power mismatch was balanced by scaling generation in the MISO North (Table A-10) except generation in Dakotas.
- AECI prior queued generation projects (Table B-7) were modeled. Power mismatch was balanced by scaling generation in AECI (Table A-13).
- Removed Scott County Hazel Creek 345 kV Network Upgrade which was originally required for DPP 2020 West projects. Removed fictitious shunt capacitors at Jamestown 345 kV bus (bus #: 620369) and Wahpeton 230 kV bus (bus #: 620329) which were originally modeled in DPP 2020 West summer shoulder models.
- Removed Gentleman Keystone Red Willow Post Rock 345 kV line which is no longer required by prior queued SPP projects. Removed Antelope Valley – Grand Prairie 345 kV line which is no longer required by prior queued SPP projects.
- Removed recently retired MISO generation in MISO West and Central areas. These
 recently retired MISO Central generation are listed in Table B-8. Power mismatch
 was balanced by scaling generation in the MISO North (Table A-10).
- Turned off MISO generation projects in DPP 2020 Central area. Power mismatch was balanced by scaling generation in the MISO North (Table A-10).
- Added NUs required for SPP West projects prior to DISIS 18-002 / 19-001 cycle (Table B-9); Added NUs required for SPP West projects in DISIS 18-002 / 19-001 cycle (Table B-10).
- Added NUs required for MPC Group 2021 projects (Table B-11); Added several NUs required for MPC 04300 project (Table B-12).
- Added the SPP Study Projects with offline status in DISIS 2020-001 cycles close to MISO West. The SPP Study Projects in MISO West are listed in Table ES-2.

1.2.1.2 MISO West AFSIS Study Cases

Summer peak (SPK) study case was created by dispatching the Study Projects in MISO West at the specified summer peak level from the benchmark case.

Summer shoulder (SH) study case was created by dispatching the Study Projects in MISO West at the specified summer shoulder level from the benchmark case.

Generation in the SPP market was used for power balance, where SPP generation was scaled based on the load-ratio share of the TO power flow modeling areas.

Both study and benchmark power flow cases were solved with transformer tap adjustment enabled, area interchange disabled, phase shifter adjustment enabled and switched shunt adjustment enabled.

1.2.1.3 Fictitious Shunt Capacitors in Summer Shoulder Case

In the starting model of MISO DPP 2020 West Phase 3 summer shoulder model, four (4) fictitious shunt capacitors were modeled due to low voltages in SPP system. Due to further voltage degradations in SPP system, sizes of some fictitious shunt capacitors were increased. All these fictitious shunt capacitors were only modeled in summer shoulder cases, which are listed in Table 1-2.

Table 1-2: Fictitious Shunt Capacitors in SPP System Modeled in Summer Shoulder

Model	Cap MVar at Mingo 345 kV (531451)	Cap MVar at Red Willow 345 kV (640325)	Cap MVar at Post Rock 345 kV (530583)	Cap MVar at Cooper 345 kV (640139)
DPP 2020 West Ph3 Shoulder Model	100	300	300	4×50
MISO AFS on DISIS 2020-001 Shoulder Model	300	300	600	4×50

1.2.2 MISO West Region AFSIS Contingency Criteria

The following contingencies were considered in the MISO West AFSIS analysis:

- NERC Category P0 (system intact no contingencies)
- NERC Category P1 contingencies
 - Single element outages, at buses with a nominal voltage of 60 kV and above.
 - Multiple-element NERC Category P1 contingencies.
 - o NERC Category P2, P4, P5, P7 contingencies.

The detailed list of contingency files is in Appendix B.7.

For all contingency and post-disturbance analyses, cases were solved with transformer tap adjustment enabled, area interchange adjustment disabled, phase shifter adjustment disabled (fixed) and switched shunt adjustment enabled.

1.2.3 MISO West Region AFSIS Monitored Elements

The MISO West AFSIS study area is defined in Table 1-3. Facilities in the study area were monitored for system intact and contingency conditions. Under NERC category P0 conditions (system intact), branches were monitored for loading above the normal (PSS®E rate A) rating. Under NERC category P1-P7 conditions, branches were monitored for loading as shown in the column labeled "Post-Disturbance Thermal Limits".

Table 1-3: MISO West AFSIS Monitored Elements

	Therma	Il Limits ¹	Volta	ge Limits ²
Owner / Area	Pre-Disturbance	Post-Disturbance	Pre-Disturbance	Post-Disturbance
AMIL	100% of Rate A	100% of Rate B	1.05/0.95	1.075/0.90
AMMO	100% of Rate A	100% of Rate B	1.05/0.95	1.075/0.90
BEPC-MISO	100% of Rate A	100% of Rate B	1.05/0.95	1.10/0.90
СММРА	100% of Rate A	100% of Rate B	1.05/0.95	1.07/0.90
CWLD	100% of Rate A	100% of Rate B	1.05/0.95	1.10/0.90
CWLP	100% of Rate A	100% of Rate B	1.05/0.95	1.075/0.90
DPC	100% of Rate A	100% of Rate B	1.05/0.95	1.10/0.90
EES	100% of Rate A	100% of Rate B	1.05/0.975/0.95	1.05/0.95/0.92/0.90
GLH	100% of Rate A	100% of Rate B	1.05/0.95	1.05/0.90
GRE	100% of Rate A	100% of Rate B	1.05/0.95	1.10/0.92/0.90
ITCM	100% of Rate A	100% of Rate B	1.07/1.05/0.95	1.10/0.93
MDU	100% of Rate A	100% of Rate B	1.05/0.95	1.10/0.90
MEC	100% of Rate A	100% of Rate B	1.05/0.96/0.95	1.05/0.96/0.95/0.94/0.93³
MMPA	100% of Rate A	100% of Rate B	1.05/0.95	1.10/0.90
MP	100% of Rate A	100% of Rate B	1.05/1.00	1.10/0.95
MPW	100% of Rate A	100% of Rate B	1.05/0.95	1.05/0.95
MRES	100% of Rate A	100% of Rate B	1.05/0.97	1.05/0.92
ОТР	100% of Rate A	100% of Rate B	1.07/1.05/0.97	1.10/0.92
PPI	100% of Rate A	100% of Rate B	1.05/0.95	1.05/0.95
RPU	100% of Rate A	100% of Rate B	1.05/0.95	1.10/0.92
SIPC	100% of Rate A	100% of Rate B	1.07/0.95	1.09/0.91
SMMPA	100% of Rate A	100% of Rate B	1.05/0.95	1.10/0.90
WPPI	100% of Rate A	100% of Rate B	1.05/0.95	1.10/0.90
XEL	100% of Rate A	100% of Rate B	1.05/0.95	1.05/0.92

<u>Notes</u>

- 1: PSS®E Rate A, Rate B or Rate C
- 2: Limits dependent on nominal bus voltage
- 3: For facilities in Cedar Falls Utilities or Ames Municipal Utilities, post-contingency voltage limits are 1.05/0.94 for >200 kV, and 1.05/0.93 for others.

1.3 MISO Steady State Performance Criteria

A branch is considered as a thermal injection constraint if the branch is loaded above its applicable normal or emergency rating for the post-change case, and any of the following conditions are met:

- 1) the generator (NR/ER) has a larger than 20% DF on the overloaded facility under post contingent condition or 5% DF under system intact condition, or
- 2) the megawatt impact due to the generator is greater than or equal to 20% of the applicable rating (normal or emergency) of the overloaded facility, or
- 3) the overloaded facility or the overload-causing contingency is at generator's outlet, or
- 4) for any other constrained facility, where none of the study generators meet one of the above criteria in 1), 2), or 3), however, the cumulative megawatt impact of the group of study generators (NR/ER) is greater than 20% of the applicable rating, then only those study generators whose individual MW impact is greater than 5% of the applicable rating and has DF greater than 5% (OTDF or PTDF) will be responsible for mitigating the cumulative MW impact constraint.

A bus is considered a voltage constraint if both of the following conditions are met. All voltage constraints must be resolved before a project can receive interconnection service.

- 1) the bus voltage is outside of applicable normal or emergency limits for the postchange case, and
- 2) the change in bus voltage is greater than 0.01 per unit.

All Study Projects must mitigate thermal injection constraints and voltage constraints in order to obtain unconditional Interconnection Service.

MISO South Affected System Study

Steady state thermal and voltage analysis and transient stability analysis were performed in the MISO South AFSIS study.

2.1 MISO South AFSIS Thermal and Voltage Analysis

Nonlinear (AC) contingency analysis was performed on the benchmark and study cases, and the incremental impact of the SPP DISIS 2020-001 Study Projects in MISO South were evaluated by comparing the steady-state performance of the transmission system in the benchmark and study cases. Network upgrades were identified to mitigate any steady state thermal and voltage constraints.

Steady-state analysis was performed in summer peak and summer shoulder discharging scenarios. PSS®E version 34.9.3 and PSS®MUST version 12.4.1 were used in the study.

2.1.1 MISO Contingency Analysis for 2025 Summer Peak Condition

Steady state AC contingency analysis was performed on the MISO South AFSIS summer peak (SPK) study and benchmark cases developed in Section 1.1.1. The 2025 summer peak MISO thermal and voltage results are in Appendix C.1.

2.1.1.1 Summer Peak System Intact Conditions

For NERC category P0 (system intact) conditions, no thermal constraints (Table C-1) or voltage constraints (Table C-2) were identified.

2.1.1.2 Summer Peak Post Contingency Conditions

The results in this Section are for analysis of conditions following NERC category P1-P7 contingencies.

For P1 contingencies, no thermal constraints (Table C-3) or voltage constraints (Table C-4) were identified.

For P2-P7 contingencies, no thermal constraints (Table C-5) or voltage constraints (Table C-6) were identified.

2.1.1.3 Summary of Summer Peak Results

In summer peak scenario, no thermal or voltage constraints were identified in the MISO South steady state analysis for the SPP Study Projects.

2.1.2 MISO Contingency Analysis for 2025 Summer Shoulder Condition

Steady state AC contingency analysis was performed on the MISO South AFSIS summer shoulder (SH) study and benchmark cases developed in Section 1.1.1. The 2025 summer shoulder MISO thermal and voltage results are in Appendix C.2.

2.1.2.1 Summer Shoulder System Intact Conditions

For NERC category P0 (system intact) conditions, no thermal constraints (Table C-7) or voltage constraints (Table C-8) were identified.

2.1.2.2 Summer Shoulder Post Contingency Conditions

The results in this Section are for analysis of conditions following NERC category P1-P7 contingencies.

For P1 contingencies, no thermal constraints (Table C-9) or voltage constraints (Table C-10) were identified.

For P2-P7 contingencies, no thermal constraints (Table C-11) or voltage constraints (Table C-12) were identified.

2.1.2.3 Summary of Summer Shoulder Results

In summer shoulder scenario, no thermal or voltage constraints were identified in the MISO South steady state analysis for the SPP Study Projects.

2.1.3 Summary of MISO South AFSIS Steady State Analysis

Based on the MISO South AFSIS steady state analysis, no thermal constraints or voltage constraints were identified in MISO system for the SPP Study Projects in MISO South; No MISO AFSIS thermal or voltage Network Upgrades (NUs) are required for the SPP Study Projects in MISO South.

2.2 MISO South AFSIS Transient Stability Analysis

Stability analysis was performed to evaluate transient stability and impact on the MISO South region of the SPP Study Projects in MISO South.

2.2.1 Procedure

2.2.1.1 Computer Programs

Stability analysis was performed using TSAT revision 22.0.

2.2.1.2 Methodology

Stability package representing 2025 summer peak (SPK) scenario with SPP DISIS 2020-001 Study Projects in MISO South was created from stability package used in MISO South AFSIS on AECI GI-105 project. Power flow models are the same as steady state power flow models, which were developed in Section 1.1.1.

Stability package representing 2025 summer shoulder (SH) scenario with SPP DISIS 2020-001 Study Projects in MISO South was created from stability package used in MISO South

AFSIS on SPP DISIS 18-002 / 19-001 Phase 3 Cycle. Power flow models are the same as steady state power flow models, which were developed in Section 1.1.1.

Disturbances were simulated to evaluate the transient stability and impact on the region of the SPP Study Projects in MISO South. MISO transient stability criteria and local TOs' planning criteria specified in MTEP20 were adopted for checking stability violations.

2.2.2 Model Development

Summer peak and summer shoulder stability power flow models are the same as the correspondent steady state models, which were developed as specified in Section 1.1.1.

Transient stability study was performed for the following Study Projects listed in Table 2-1. Based on the generator / inverter / turbine types, corresponding dynamic models were used for representing the dynamic behaviors of these Study Projects. The dynamic models are listed in Table 2-1.

Table 2-1: Dynamic Models for SPP DISIS 2020-001 Study Projects in MISO South

SPP Project #	Fuel Type	Generator / Inverter / Turbine Type
GEN-2020-009	Solar / Storage	REGCAU (solar) REGCAU (battery)
GEN-2020-010	Solar / Storage	REGCAU (solar)
GEN-2020-012	Solar / Storage	REGCAU (solar)
GEN-2020-015	Solar	REGCAU
GEN-2020-016	Wind	GEWTG0705
GEN-2020-020	Solar / Storage	REGCAU (solar) REGCAU (battery)
GEN-2020-023	Storage	REGCAU
GEN-2020-052	Wind	GEWTG0705
GEN-2020-054	Solar	REGCAU
GEN-2020-059	Solar / Storage	REGCA1 (solar) REGCA1 (battery)
GEN-2020-060	Storage	REGCAU
GEN-2020-062	Solar	REGCA1
GEN-2020-065	СС	GENTPJ1
GEN-2020-067	Wind	REGCA1
GEN-2020-068	Solar	REGCA1
GEN-2020-074	Storage	REGCAU

SPP Project #	Fuel Type	Generator / Inverter / Turbine Type
GEN-2020-075	Storage	REGCAU
GEN-2020-081	Storage	REGCA1
GEN-2020-085	Solar	REGCAU
GEN-2020-087	Solar	REGCAU
GEN-2020-092	Solar	REGCA1

2.2.3 Disturbance Criteria

The stability simulations performed as part of this study considered all the regional and local contingencies listed in Table 2-2. Regional contingencies with pre-defined switching sequences were selected from the MISO MTEP20 study; switching sequences for local contingencies were developed based on the generic clearing times shown in Table 2-3. The admittance for local single line-to-ground (SLG) faults were estimated by assuming that the Thevenin impedance of the positive, negative and zero sequence networks at the fault point are equal.

Table 2-2: MISO South AFSIS Regional and Local Disturbance Descriptions

CEII Redacted

Table 2-3: Generic Clearing Time Assumption

Voltage Level (kV)	Primary Clearing Time (cycle)	Backup Clearing Time (cycle)
345 kV	4	11
230 kV	5	13
161/138 kV	6	18
115 kV	6	20
69 kV	8	24

2.2.4 Performance Criteria

MISO transient stability criteria and local TOs' planning criteria specified in MTEP20 were adopted. The Study Projects must mitigate the stability constraints to obtain any type of Interconnection Service.

2.2.5 Summer Peak Stability Results

The contingencies listed in Table 2-2 were simulated using the summer peak stability model.

Appendix D.1.2 contains plots of generator rotor angles, generator power output, and bus voltages for each simulation. Simulations were performed with a 0.5 seconds steady-state run followed by the appropriate disturbance. Simulations were run for a 10-second duration.

MISO South AFSIS summer peak stability study results summary is in Appendix D.1.1, Table D-1.

The following stability related issues were identified in the summer peak stability study.

2.2.5.1 Generation Tripping Due to Instability

Under two contingencies (Table 2-4), Gaines 1003 MW plant (GEN-2020-065) was tripped due to instability. About 1000 MW generation was forced through a 448 MVA 345/115 kV xfmr at Andrews (528604). GEN-2020-065 (Gaines plant) is fully responsible for mitigating the instability of the power plant. No MISO Network Upgrades are required.

Table 2-4: Gaines Plant Tripping Due to Instability

CEII Redacted

2.2.6 Stability Network Upgrades Identified in Summer Peak

In summary, no MISO Affected System stability constraints were identified in the summer peak scenario. The instability of GEN-2020-065 was caused by limited outlets after the contingency. The GEN-2020-065 generation project is responsible for mitigating the instability of the power plant. No MISO AFSIS stability NUs are required in summer peak stability study.

2.2.7 Summer Shoulder Stability Results

The contingencies listed in Table 2-2 were simulated using the summer shoulder stability model.

Appendix D.2.2 contains plots of generator rotor angles, generator power output, and bus voltages for each simulation. Simulations were performed with a 0.5 seconds steady-state run followed by the appropriate disturbance. Simulations were run for a 10-second duration.

MISO South AFSIS summer shoulder stability study results summary is in Appendix D.2.1, Table D-2.

The following stability related issues were identified in the summer shoulder stability study.

2.2.7.1 Generation Tripping Due to Low Voltages / Instability

Under three NERC Category P6 contingencies (Table 2-5), several local generators were tripped due to instability and/or low voltages. These local generators have more than 1200 MW power flowing through one or two transformers after the fault. The same local generators were also tripped due to instability and/or low voltages under the same contingencies in the benchmark model. Therefore, the SPP Study Projects in MISO South are not responsible for the local generation tripping.

Table 2-5: Local Generation Tripping Due to Instability / Low Voltages

CEII Redacted

2.2.8 Stability Network Upgrades Identified in Summer Shoulder

In summary, no MISO Affected System stability constraints were identified in the summer shoulder scenario. No MISO AFSIS stability NUs are required in summer shoulder stability study.

2.2.9 Summary of MISO South AFSIS Transient Stability Analysis

Based on the MISO South 2025 summer peak and summer shoulder transient stability analysis, no MISO South AFSIS stability NUs are required for the SPP Study Projects in MISO South.

Section 3

MISO West Affected System Study

Steady state thermal and voltage analysis and transient stability analysis were performed in the MISO West AFSIS study.

3.1 MISO West AFSIS Thermal and Voltage Analysis

Nonlinear (AC) contingency analysis was performed on the benchmark and study cases, and the incremental impact of the SPP DISIS 2020-001 Study Projects in MISO West were evaluated by comparing the steady-state performance of the transmission system in the benchmark and study cases. Network upgrades were identified to mitigate any steady state thermal and voltage constraints.

Steady-state analysis was performed in summer peak and summer shoulder discharging scenarios. PSS®E version 34.9.3 and PSS®MUST version 12.4.1 were used in the study.

3.1.1 MISO Contingency Analysis for 2025 Summer Peak Condition

Steady state AC contingency analysis was performed on the MISO West AFSIS summer peak (SPK) study and benchmark cases developed in Section 1.2.1. The 2025 summer peak MISO thermal and voltage results are in Appendix E.1.

3.1.1.1 Summer Peak System Intact Conditions

For NERC category P0 (system intact) conditions, no thermal constraints (Table E-1) or voltage constraints (Table E-2) were identified.

3.1.1.2 Summer Peak Post Contingency Conditions

The results in this Section are for analysis of conditions following NERC category P1-P7 contingencies. All NERC Category P1 contingencies were converged.

For P1 contingencies, no thermal constraints (Table E-3) or voltage constraints (Table E-4) were identified.

For P2-P7 contingencies, no thermal constraints (Table E-5) or voltage constraints (Table E-6) were identified.

3.1.1.3 Summary of Summer Peak Results

In summer peak scenario, no thermal or voltage constraints were identified in the MISO West steady state analysis for the SPP Study Projects.

3.1.2 MISO Contingency Analysis for 2025 Summer Shoulder Condition

Steady state AC contingency analysis was performed on the MISO West AFSIS summer shoulder (SH) study and benchmark cases developed in Section 1.2.1. The 2025 summer shoulder MISO thermal and voltage results are in Appendix E.2.

3.1.2.1 Summer Shoulder System Intact Conditions

For NERC category P0 (system intact) conditions, thermal constraints are listed in Table E-7. No voltage constraints were identified (Table E-8).

3.1.2.2 Summer Shoulder Post Contingency Conditions

The results in this Section are for analysis of conditions following NERC category P1-P7 contingencies. All NERC Category P1 contingencies were converged.

For P1 contingencies, thermal constraints are listed in Table E-9. No voltage constraints were identified (Table E-10).

One category P2-P7 contingency (Table E-13) was not converged in both the benchmark and study cases. No mitigation plan is required for the SPP Study Projects for this non-converged contingency.

For the non-converged contingency in Table E-13, DC contingency analysis was performed to get the dc thermal results. The dc thermal results for non-converged contingencies are listed in Table E-14.

For P2-P7 contingencies, no thermal constraints (Table E-11) or voltage constraints (Table E-12) were identified.

3.1.2.3 Summer Shoulder Worst Constraints

In the 2025 summer shoulder scenario, MISO West AFSIS worst thermal constraints are listed in Table 3-1. No voltage constraints were identified.

Table 3-1: 2025 Summer Shoulder MISO West AFSIS Thermal Constraints, Maximum Screened Loading

Generator	Constraint	Rating	Owner	Worst Loading		Contingency	Cont
				(MVA)	(%)		Туре
GEN-2020-021, GEN-2020-083	New Sub - Buffalo 345 kV	956	OTP MPC	1044.6	109.3	CEII Redacted	P0
GEN-2020-021	New Sub - Buffalo 345 kV	1041.6	OTP MPC	1076.4	103.3	CEII Redacted	P1
GEN-2020-021	Sheyenne-Lake Park 230 kV	300.8	XEL MPC OTP	381.2	126.7	CEII Redacted	P1
GEN-2020-021	Audubon-Lake Park 230 kV	293.6	ОТР	373.2	127.1	CEII Redacted	P1

MISO West Affected System Study

3.1.2.4 Summary of Summer Shoulder Results

In the summer shoulder scenario, Table 3-2 lists MISO West AFSIS thermal constraints and Network Upgrades.

Table 3-2: MISO West AFSIS Thermal Constraints and Network Upgrades in Summer Shoulder Scenario

Generator	Constraint	Owner	Mitigation	Cost (\$)
GEN-2020-021, GEN-2020-083	New Sub - Buffalo 345 kV	OTP MPC	OTP: OTP equipment is sufficient, MPC conductor is limiter. \$0 MPC: NU will be determined in MPC study	\$0
GEN-2020-021	Sheyenne-Lake Park 230 kV	XEL MPC OTP	OTP: Prior queued upgrade will increase rating to 353.7 MVA (MPC-04300). Additional structure replacements required. \$400,000	\$400,000
GEN-2020-021	Audubon-Lake Park 230 kV	ОТР	Prior queued upgrade will increase rating to 479.2 / 527.1 MVA (MPC-04300). No upgrade necessary.	\$0

3.1.3 Summary of MISO West AFSIS Steady State Analysis

MISO West steady state analyses were performed on the MISO 2025 summer peak and summer shoulder scenarios. The steady state thermal constraints and required Network Upgrades are listed in Table 3-3. No voltage constraints were identified.

Table 3-3: Combined Thermal Constraints and Network Upgrades

Generator	Constraint	Owner	Mitigation	Cost (\$)
GEN-2020-021, GEN-2020-083	New Sub - Buffalo 345 kV	MPC	OTP: OTP equipment is sufficient, MPC conductor is limiter. \$0 MPC: NU will be determined in MPC study	\$0
GEN-2020-021	Sheyenne-Lake Park 230 kV	XEL MPC OTP	OTP: Prior queued upgrade will increase rating to 353.7 MVA (MPC-04300). Additional structure replacements required. \$400,000	\$400,000
GEN-2020-021	Audubon-Lake Park 230 kV	ОТР	Prior queued upgrade will increase rating to 479.2 / 527.1 MVA (MPC-04300). No upgrade necessary.	\$0

3.2 MISO West AFSIS Transient Stability Analysis

Stability analysis was performed to evaluate transient stability and impact on the MISO West region of the SPP Study Projects in MISO West.

3.2.1 Procedure

3.2.1.1 Computer Programs

Stability analysis was performed using TSAT revision 22.0.

3.2.1.2 Methodology

Stability package representing 2025 summer peak (SPK) scenario with SPP DISIS 2020-001 Study Projects in MISO West was created from stability package used in MISO West AFSIS on AECI GI-102 project. Power flow models are the same as steady state power flow models, which were developed in Section 1.2.1.

Stability package representing 2025 summer shoulder (SH) scenario with SPP DISIS 2020-001 Study Projects in MISO West was created from stability package used in MISO West AFSIS on SPP DISIS 18-002 / 19-001 Phase 3 Cycle. Power flow models are the same as steady state power flow models, which were developed in Section 1.2.1.

Disturbances were simulated to evaluate the transient stability and impact on the region of the SPP Study Projects in MISO West. MISO transient stability criteria and local TOs' planning criteria specified in MTEP20 were adopted for checking stability violations.

3.2.2 Model Development

Summer peak and summer shoulder stability power flow models are the same as the correspondent steady state models, which were developed as specified in Section 1.2.1.

Transient stability study was performed for the following Study Projects listed in Table 3-4. Based on the generator / inverter / turbine types, corresponding dynamic models were used for representing the dynamic behaviors of these Study Projects. The dynamic models are listed in Table 3-4.

Table 3-4: Dynamic Models for SPP Study Projects in MISO West

SPP Project #	Fuel Type	Generator / Inverter / Turbine Type
ASGI-2020-001	Solar / Storage	REGCA1 (solar) REGCA1 (battery)
ASGI-2020-003	Solar / Storage	REGCA1 (solar) REGCA1 (battery)
GEN-2020-001	Solar	REGCAU
GEN-2020-002	Solar	REGCA1
GEN-2020-006	Solar	REGCA1
GEN-2020-007	Solar / Storage	REGCAU (solar) REGCAU (solar)

MISO West Affected System Study

SPP Project #	Fuel Type	Generator / Inverter / Turbine Type
GEN-2020-008	Solar / Storage	REGCA1 (solar) REGCA1 (battery)
GEN-2020-011	Solar / Storage	REGCA1 (solar) REGCA1 (battery)
GEN-2020-013	Solar / Storage	REGCAU (solar) REGCAU (battery)
GEN-2020-014	Gas	GENROE
GEN-2020-021	Wind	REGCA1
GEN-2020-025	CT Gas	GENTPJU1
GEN-2020-027	Solar / Storage	REGCAU (solar) REGCAU (battery)
GEN-2020-028	CT Gas	GENTPJU1
GEN-2020-030	Solar / Storage	REGCAU (solar) REGCAU (battery)
GEN-2020-031	CT Gas	GENTPJU1
GEN-2020-033	Solar / Storage	REGCAU (solar) REGCAU (battery)
GEN-2020-036	Solar / Storage	REGCAU (solar) REGCAU (battery)
GEN-2020-038	CT Gas	GENTPJU1
GEN-2020-043	Reciprocating Engine	GENTPJU1
GEN-2020-044	Reciprocating Engine	GENTPJU1
GEN-2020-045	Reciprocating Engine	GENTPJU1
GEN-2020-056	Solar	REGCAU
GEN-2020-057	Storage	REGCAU
GEN-2020-058	Solar	REGCA1
GEN-2020-061	CC Gas	GENROU
GEN-2020-064	CT Gas	GENTPJ1
GEN-2020-069	Wind	CP220961102 VPPC51100V61102
GEN-2020-070	Wind	REGCA1
GEN-2020-071	Wind	CP220961102 VPPC51100V61102

SPP Project #	Fuel Type	Generator / Inverter / Turbine Type
GEN-2020-072	Solar / Storage	REGCA1 (solar) REGCA1 (battery)
GEN-2020-073	Solar / Storage	REGCA1 (solar) REGCA1 (battery)
GEN-2020-076	Storage	REGCAU
GEN-2020-077	Wind	EV212260602 VPPC50800V60602
GEN-2020-078	Solar	REGCA1
GEN-2020-079	Solar / Storage	REGCAU (solar) REGCAU (battery)
GEN-2020-083	Solar / Storage	REGCAU (solar) REGCAU (battery)
GEN-2020-084	Solar	REGCA1
GEN-2020-086	Solar	REGCAU
GEN-2020-088	Solar	REGCA1
GEN-2020-089	Solar	REGCAU
GEN-2020-090	Solar	REGCAU
GEN-2020-091	Solar	REGCA1
GEN-2020-094	Solar	REGCA1

3.2.3 Disturbance Criteria

The stability simulations performed as part of this study considered all the regional and local contingencies listed in Table 3-5. Regional contingencies with pre-defined switching sequences were selected from the MISO MTEP20 study; switching sequences for local contingencies were developed based on the generic clearing times shown in Table 2-3. The admittance for local single line-to-ground (SLG) faults were estimated by assuming that the Thevenin impedance of the positive, negative and zero sequence networks at the fault point are equal.

MISO West Affected System Study

Table 3-5: MISO West AFSIS Regional and Local Disturbance Descriptions

CEII Redacted

3.2.4 Performance Criteria

MISO transient stability criteria and local TOs' planning criteria specified in MTEP20 were adopted. The Study Projects must mitigate the stability constraints to obtain any type of Interconnection Service.

3.2.5 Summer Peak Stability Results

The contingencies listed in Table 3-5 were simulated using the summer peak stability model.

Appendix F.1.2 contains plots of generator rotor angles, generator power output, and bus voltages for each simulation. Simulations were performed with a 0.5 seconds steady-state run followed by the appropriate disturbance. Simulations were run for a 10-second duration.

MISO West AFSIS summer peak stability study results summary is in Appendix F.1.1, Table F-1.

The following stability related issues were identified in the summer peak stability study.

3.2.5.1 Post-Fault Small Oscillation of Generation Output

Under several contingencies listed in Table 3-6, small oscillations were observed on active and reactive power output of several conventional generators (Coal Creek unit 2, Young 1, Young 2) after faults were cleared. The same power output oscillations were also observed in the benchmark case. The oscillation issues were not caused by the SPP Study Projects in MISO West.

Table 3-6: Post-Fault Small Oscillation of Generation Output

CEII Redacted

3.2.5.2 Power Oscillation from GEN-2020-006 Output

Under two contingencies (Table 3-7) at GEN-2020-006 POI (Bowman 230 kV), active power and reactive power outputs were oscillating after the fault was cleared (Figure 3-1). The post-fault Short Circuit Ratio (SCR) at the POI was only 2.02. GEN-2020-006 power plant controller model (REPCA1) has Kp (Volt/VAR regulator proportional gain) set at 50 and Ki (Volt/VAR regulator integral gain) set at 5. If the Kp is reduced to 5 and Ki is reduced to 0.5, the active power output and reactive power output from GEN-2020-006 become stable (Figure 3-2). The power oscillation from GEN-2020-006 output was caused by GEN-2020-006 generation project. The GEN-2020-006 generation project is responsible for fixing this issue.

Table 3-7: Power Oscillation from GEN-2020-006 Output

CEII Redacted

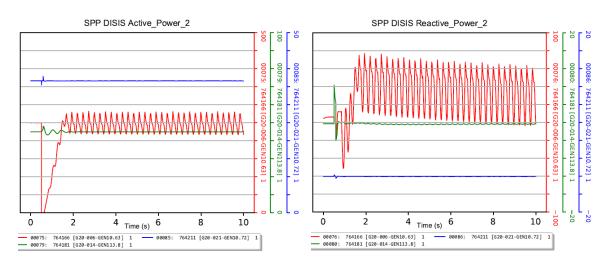


Figure 3-1: GEN-2020-006 Power Oscillation with Original Kp=50 & Ki=5 under the Fault "BOWMAN__- BE4_3PH_POI_RHAME___-BE4_Fault"

MISO West Affected System Study

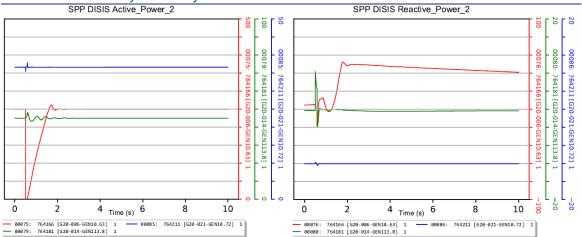


Figure 3-2: GEN-2020-006 Power Oscillation with Updated Kp=5 & Ki=0.5 under the Fault "BOWMAN__- BE4_3PH_POI_RHAME___-BE4_Fault"

3.2.6 Stability Network Upgrades Identified in Summer Peak

In summary, no MISO Affected System stability constraints were identified in the summer peak scenario. The power oscillation from GEN-2020-006 output was caused by GEN-2020-006 generation project. The GEN-2020-006 generation project is responsible for fixing this issue. No MISO AFSIS stability NUs are required in summer peak stability study.

3.2.7 Summer Shoulder Stability Analysis

The contingencies listed in Table 3-5 were simulated using the summer shoulder stability model. The summer shoulder stability model was developed from the summer shoulder steady state model. As mentioned in Section 1.2.1.3, four (4) fictitious shunt capacitors were modeled in summer shoulder cases (Table 1-2) due to low voltages in SPP system.

3.2.8 Summer Shoulder Stability Results

Appendix F.2.2 contains plots of generator rotor angles, generator power output, and bus voltages for each simulation. Simulations were performed with a 0.5 seconds steady-state run followed by the appropriate disturbance. Simulations were run for a 10-second duration.

MISO West AFSIS summer shoulder stability study results summary is in Appendix F.2.1, Table F-2.

The following stability related issues were identified in the summer shoulder stability study.

3.2.8.1 Voltage Collapse at Post Rock and Red Willow

Under two contingencies listed in Table 3-8, voltage collapse was observed at Post Rock and Red Willow 345 kV buses. In the summer shoulder power flow case, 300 MVar fictitious shunt capacitor was modeled at Red Willow 345 kV bus and 600 MVar fictitious shunt capacitor was modeled at Post Rock 345 kV bus. The identified voltage collapse in SPP

system should be investigated in detail through SPP DISIS study. MISO Affected System Network Upgrade is not required.

Table 3-8: Voltage Collapse at Post Rock and Red Willow

CEII Redacted

3.2.8.2 Post-Fault Small Oscillation of Generation Output

Under two contingencies listed in Table 3-9, small oscillations were observed on active and reactive power output of Coal Creek unit 2 after faults were cleared. The same power output oscillations were also observed in the benchmark case. The oscillation issues were not caused by the SPP Study Projects in MISO West.

Table 3-9: Post-Fault Small Oscillation of Generation Output

CEII Redacted

3.2.8.3 Transient High Voltage Violations in OTP, GRE, MRES

Under six contingencies listed in Table 3-10, transient high voltage violations (>1.2 p.u. for more than 0.012 sec) were observed in OTP, GRE, and MRES buses. These transient high voltage violations should be mitigated once the added STATCOMs at Winger (50 MVar STATCOM, MPC Group 2021 NU), Wahpeton (150 MVar STATCOM, MPC04300 NU), and Audubon (150 MVar STATCOM, MPC04300 NU) are designed in detail. Network Upgrade is not required for the SPP Study Projects in MISO West.

MISO West Affected System Study

Table 3-10: Transient High Voltage Violations in OTP, GRE, MRES

CEII Redacted

3.2.9 Stability Constraints Identified in Summer Shoulder

In summary, no MISO Affected System stability constraints were identified in the summer shoulder scenario. The voltage collapse at Post Rock and Red Willow in SPP system is unrelated to MISO Affected System. No MISO AFSIS stability NUs are required in summer shoulder stability study.

3.2.10 Summary of MISO West AFSIS Transient Stability Analysis

Based on the MISO West 2025 summer peak and summer shoulder transient stability analysis, no MISO West AFSIS stability Network Upgrades are required for the SPP West projects in DISIS 2020-001 cycle.

Section

4

Contingent Facilities

4.1 Contingent Facilities in MISO South

No contingent MTEP facilities were identified for the SPP Study Projects in MISO South.

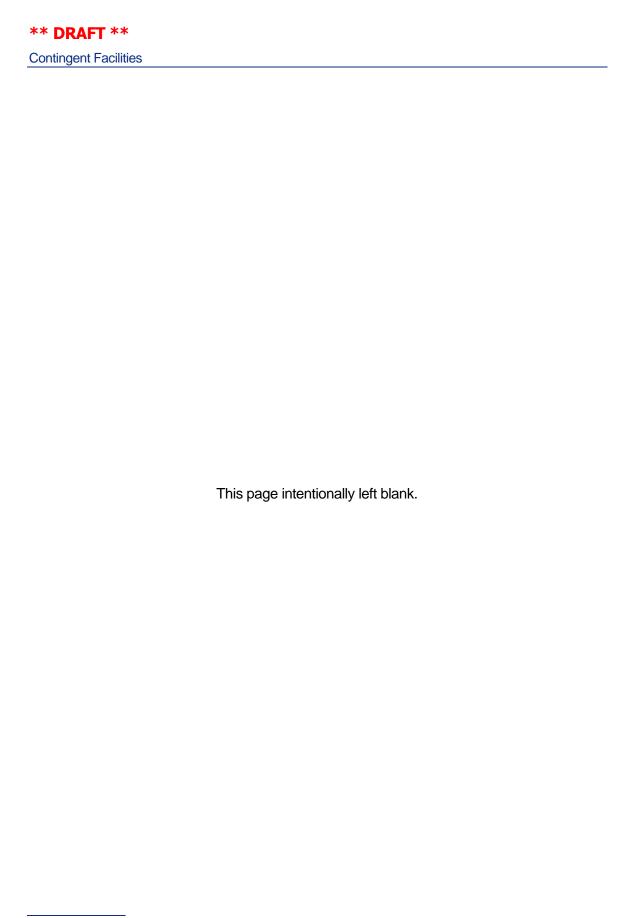

4.2 Contingent Facilities in MISO West

Table 4-1 describes transmission assumptions modeled in the studies that were deemed necessary to mitigate the thermal violations identified in the study.

For the study projects that are required to mitigate thermal violations, the projects should not be allowed to come into service before the required Network Upgrades in service, unless a MISO restudy removes the mitigation requirement from the project, or an interim limit was provided to the project through MISO Annual ERIS process.

Table 4-1: Contingent Facility and Conditional Projects in MISO West

MTEP ID	MTEP Cycle	Project Name	Project Description	Expected ISD	Conditional Projects
TBD	TBD	MPC04300 Upgrade: Sheyenne-Lake Park 230 kV Rating Increase	OTP: Prior queued upgrade will increase rating to 353.7 MVA (MPC-04300).	TBD	GEN-2020-021
TBD	TBD	MPC04300 Upgrade: Audubon-Lake Park 230 kV	OTP: Prior queued upgrade will increase rating to 479.2 / 527.1 MVA (MPC-04300).	TBD	GEN-2020-021

Network Upgrades and Cost Allocation

5.1 Cost Assumptions for Network Upgrades

The cost estimate for each network upgrade was provided by the corresponding transmission owning company.

5.2 Cost Allocation Methodology

Costs of AFSIS Network Upgrades are allocated based on MISO Network Upgrade cost allocation methodology, which is detailed in the MISO Generation Interconnection Business Practices Manual BPM-015.

5.3 AFSIS Network Upgrades Required for the SPP DISIS 2020-001 Phase 2 Study Projects

5.3.1 AFSIS Network Upgrades Required for the SPP Study Projects in MISO South

5.3.1.1 MISO South AFSIS Network Upgrades

Based on the MISO South 2025 summer peak and summer shoulder steady state analysis, no thermal constraints or voltage constraints were identified in MISO system for the SPP Study Projects in MISO South; No MISO South AFSIS thermal or voltage NUs are required for the SPP Study Projects in MISO South.

Based on the MISO South 2025 summer peak and summer shoulder transient stability analysis, no transient stability constraints were identified for the SPP Study Projects in MISO South; No MISO South AFSIS stability NUs are required for the SPP Study Projects in MISO South.

A short circuit screening analysis was conducted by comparing three phase fault currents in the benchmark and study cases for the SPP Study Projects in MISO South. Based on the screening results, MISO Transmission Owners do not plan to conduct additional studies.

No contingent MTEP facilities were identified for the SPP Study Projects in MISO South.

In conclusion, SPP Study Projects in MISO South are not responsible for any MISO AFSIS NUs.

5.3.1.2 MISO South AFSIS NU Cost Allocation

A summary of the costs for total MISO AFSIS NUs allocated to the SPP Study Projects in MISO South is listed in Table 5-1.

Table 5-1: Summary of MISO South AFSIS NU Costs Allocated to the SPP South Study Projects

	Netv	work Upgrades	k Upgrades (\$)		
Project Num	MISO Thermal & Voltage	Transient Stability	Short Circuit	Total Network Upgrade Cost (\$)	
GEN-2020-009	\$0	\$0	\$0	\$0	
GEN-2020-010	\$0	\$0	\$0	\$0	
GEN-2020-012	\$0	\$0	\$0	\$0	
GEN-2020-015	\$0	\$0	\$0	\$0	
GEN-2020-016	\$0	\$0	\$0	\$0	
GEN-2020-020	\$0	\$0	\$0	\$0	
GEN-2020-023	\$0	\$0	\$0	\$0	
GEN-2020-052	\$0	\$0	\$0	\$0	
GEN-2020-054	\$0	\$0	\$0	\$0	
GEN-2020-059	\$0	\$0	\$0	\$0	
GEN-2020-060	\$0	\$0	\$0	\$0	
GEN-2020-062	\$0	\$0	\$0	\$0	
GEN-2020-065	\$0	\$0	\$0	\$0	
GEN-2020-067	\$0	\$0	\$0	\$0	
GEN-2020-068	\$0	\$0	\$0	\$0	
GEN-2020-074	\$0	\$0	\$0	\$0	
GEN-2020-075	\$0	\$0	\$0	\$0	
GEN-2020-081	\$0	\$0	\$0	\$0	
GEN-2020-085	\$0	\$0	\$0	\$0	
GEN-2020-087	\$0	\$0	\$0	\$0	
GEN-2020-092	\$0	\$0	\$0	\$0	
Total (\$)	\$0	\$0	\$0	\$0	

5.3.2 AFSIS Network Upgrades Required for the SPP Study Projects in MISO West

5.3.2.1 MISO West AFSIS Network Upgrades

Based on the MISO West 2025 summer peak and summer shoulder steady state analysis, thermal constraints were identified in MISO system for the SPP Study Projects in MISO West; No voltage constraints were identified in MISO West. MISO West AFSIS thermal NUs are required for the SPP Study Projects in MISO West.

Based on the MISO West 2025 summer peak and summer shoulder transient stability analysis, no MISO West AFSIS stability Network Upgrades are required for the SPP Study Projects in MISO West.

A short circuit screening analysis was conducted by comparing three phase fault currents in the benchmark and study cases for the SPP Study Projects in MISO West. Based on the screening results, MISO Transmission Owners do not plan to conduct additional studies.

No contingent MTEP facilities were identified for the SPP Study Projects in MISO South.

The total costs of MISO West AFSIS Network Upgrades for SPP Study Projects in MISO West are summarized in Table 5-2.

Table 5-2: Summary of MISO West AFSIS Network Upgrades

Category of Network Upgrades	Cost (\$)
Thermal Network Upgrades Identified in MISO Steady-State Analysis	\$400,000
Voltage Network Upgrades Identified in MISO Steady-State Analysis	\$0
Network Upgrades Identified in Stability Analysis	\$0
Network Upgrades Identified in Short Circuit Analysis	\$0
Total	\$400,000

MISO West AFSIS Network Upgrades for SPP Study Projects in MISO West are listed below. OTP intends to self-fund the upgrade.

Table 5-3: MISO West Thermal NUs and Cost

Constraint	Owner	Mitigation	Cost (\$)
New Sub - Buffalo 345 kV	OTP MPC	OTP: OTP equipment is sufficient, MPC conductor is limiter. \$0 MPC: NU will be determined in MPC study	\$0
Sheyenne-Lake Park 230 kV	XEL MPC OTP	OTP: Prior queued upgrade will increase rating to 353.7 MVA (MPC-04300). Additional structure replacements required. \$400,000	\$400,000
Audubon-Lake Park 230 kV	ОТР	Prior queued upgrade will increase rating to 479.2 / 527.1 MVA (MPC-04300). No upgrade necessary.	\$0

Table 5-4: MISO West Steady-State Voltage NUs and Cost

Network Upgrades	Owner	Study Cycle	Cost (\$)
No voltage NUs			\$0

Table 5-5: MISO West Transient Stability NUs and Cost

Network Upgrades	Owner	Cost (\$)
No MISO AFS stability NUs		\$0

Table 5-6: MISO West Short Circuit Network Upgrades

NUs	Cost (\$)
No short circuit NUs	\$0

Table 5-7: MISO West Contingent Facility and Conditional Projects

MTEP ID	MTEP Cycle	Project Name	Expected ISD	Conditional Projects
TBD	TBD	MPC04300 Upgrade: Sheyenne-Lake Park 230 kV Rating Increase	TBD	GEN-2020-021
TBD	TBD	MPC04300 Upgrade: Audubon-Lake Park 230 kV	TBD	GEN-2020-021

5.3.2.2 MISO West AFSIS NU Cost Allocation

The calculated Distribution Factor (DF) results, voltage impact, and MW contribution on each MISO West Affected System constraint are in Appendix G.1. The cost allocation for each NU is calculated based on the contribution of each generating facility, as detailed in Appendix G.2.

Assuming all generation projects in the SPP Study Projects in MISO West advance, a summary of the costs for total MISO West AFSIS NUs allocated to each generation project is listed in Table 5-8.

Table 5-8: Summary of MISO West AFSIS NU Costs Allocated to the SPP West Study Projects

	Netw	ork Upgrades (Total Nationals	
Project Num	MISO Thermal & Voltage	Transient Stability	Short Circuit	Total Network Upgrade Cost (\$)
ASGI-2020-001	\$0	\$0	\$0	\$0
ASGI-2020-003	\$0	\$0	\$0	\$0
GEN-2020-001	\$0	\$0	\$0	\$0
GEN-2020-002	\$0	\$0	\$0	\$0
GEN-2020-006	\$0	\$0	\$0	\$0
GEN-2020-007	\$0	\$0	\$0	\$0

	Netw	Network Upgrades (\$)					
Project Num	MISO Thermal & Voltage	Transient Stability	Short Circuit	Total Network Upgrade Cost (\$)			
GEN-2020-008	\$0	\$0	\$0	\$0			
GEN-2020-011	\$0	\$0	\$0	\$0			
GEN-2020-013	\$0	\$0	\$0	\$0			
GEN-2020-014	\$0	\$0	\$0	\$0			
GEN-2020-021	\$400,000	\$0	\$0	\$400,000			
GEN-2020-025	\$0	\$0	\$0	\$0			
GEN-2020-027	\$0	\$0	\$0	\$0			
GEN-2020-028	\$0	\$0	\$0	\$0			
GEN-2020-030	\$0	\$0	\$0	\$0			
GEN-2020-031	\$0	\$0	\$0	\$0			
GEN-2020-033	\$0	\$0	\$0	\$0			
GEN-2020-036	\$0	\$0	\$0	\$0			
GEN-2020-038	\$0	\$0	\$0	\$0			
GEN-2020-043	\$0	\$0	\$0	\$0			
GEN-2020-044	\$0	\$0	\$0	\$0			
GEN-2020-045	\$0	\$0	\$0	\$0			
GEN-2020-056	\$0	\$0	\$0	\$0			
GEN-2020-057	\$0	\$0	\$0	\$0			
GEN-2020-058	\$0	\$0	\$0	\$0			
GEN-2020-061	\$0	\$0	\$0	\$0			
GEN-2020-064	\$0	\$0	\$0	\$0			
GEN-2020-069	\$0	\$0	\$0	\$0			
GEN-2020-070	\$0	\$0	\$0	\$0			
GEN-2020-071	\$0	\$0	\$0	\$0			
GEN-2020-072	\$0	\$0	\$0	\$0			
GEN-2020-073	\$0	\$0	\$0	\$0			
GEN-2020-076	\$0	\$0	\$0	\$0			
GEN-2020-077	\$0	\$0	\$0	\$0			
GEN-2020-078	\$0	\$0	\$0	\$0			
GEN-2020-079	\$0	\$0	\$0	\$0			
GEN-2020-083	\$0	\$0	\$0	\$0			

	Netw	ork Upgrades (\$)	
Project Num	MISO Thermal & Voltage	Transient Stability	Short Circuit	Total Network Upgrade Cost (\$)
GEN-2020-084	\$0	\$0	\$0	\$0
GEN-2020-086	\$0	\$0	\$0	\$0
GEN-2020-088	\$0	\$0	\$0	\$0
GEN-2020-089	\$0	\$0	\$0	\$0
GEN-2020-090	\$0	\$0	\$0	\$0
GEN-2020-091	\$0	\$0	\$0	\$0
GEN-2020-094	\$0	\$0	\$0	\$0
Total (\$)	\$400,000	\$0	\$0	\$400,000

MISO South AFSIS Model Development for Steady-State Analysis

A.1 Recently Withdrawn Prior Queued Projects

Table A-1: Recently Withdrawn MISO South Prior Queued Project

Prj#	Bus Number	Bus Name		Status
J1509	45090	J1509 GEN 0.6300	1	Withdrawn

Table A-2: Recently Withdrawn MISO Central Prior Queued Project

Prj#	Bus Number	Bus Name	ld	Status
J1074	40740	J1074 GEN 0.6000	1	Withdrawn
J1225	42250	J1225 GEN 0.6300	1	Withdrawn
J1353	43530	J1353 GEN 0.3850	1	Withdrawn

Table A-3: Recently Withdrawn SPP Prior Queued Project

Prj#	Status	Bus Number	Bus Name	ld
GEN-2017-152	TERMINATED	761128	G17-152GEN1 0.6900	1
GEN-2017-155	WITHDRAWN	761337	G17-155GEN1 0.6900	1
GEN-2017-166	WITHDRAWN	761862	G17-166GEN1 0.6900	1
GEN-2017-213	WITHDRAWN	760371	G17-213-GEN10.6300	1
GEN-2017-213	WITHDRAWN	760371	G17-213-GEN10.6300	2
GEN-2017-213	WITHDRAWN	760374	G17-213-GEN20.6300	1
GEN-2017-213	WITHDRAWN	760374	G17-213-GEN20.6300	2
GEN-2017-240	WITHDRAWN	760161	G17-240-GEN10.5500	1
GEN-2018-051	WITHDRAWN	762859	G18-051-GEN10.6450	1

Table A-4: Removed Withdrawn Generation Projects in DISIS 18-002 / 19-001

Prj#	Status	Bus Number	Bus Name	ld
GEN-2018-073	WITHDRAWN	763090	G18-073-GEN10.6600	1
GEN-2018-087	WITHDRAWN	763167	G18-087-GEN10.6450	1
GEN-2018-092	WITHDRAWN	763222	G18-092-GEN10.6600	1
GEN-2018-092	WITHDRAWN	763225	G18-092-GEN20.6600	1
GEN-2018-117	WITHDRAWN	763343	G18-117-GEN10.6300	1
GEN-2018-117	WITHDRAWN	763346	G18-117-GEN20.6000	1
GEN-2019-052	WITHDRAWN	763838	G19-052-GEN10.6300	1
GEN-2019-052	WITHDRAWN	763841	G19-052-GEN20.6000	1
GEN-2019-066	WITHDRAWN	763948	G19-066GEN1 0.7200	1
GEN-2019-067	WITHDRAWN	763959	G19-067-GEN10.7200	1

A.2 SPP Prior Queued Generation Projects

Table A-5: SPP Prior Queued Generation Projects

Projects	Cluster	MW	Generation Type	Town or County	State	Substation or Line	TO at POI
GEN-2016-037	DISIS-2017-001	300	Wind	Washita	ОК	Chisholm-Gracemont 345kV	AEP
GEN-2017-023	DISIS-2017-001	85	Solar	Choctaw	ОК	Hugo Power Plant 138 kV	WFEC
GEN-2017-027	DISIS-2017-001	140	Wind	Carter	ОК	Pooleville-Ratliff (Carter County) 138kV	OGE
GEN-2017-040	DISIS-2017-001	200.1	Solar	Ochiltree	TX	Canadian River-Muskogee and Muskogee-Seminole 345kV	OGE
GEN-2017-057	DISIS-2017-001	72.5	Solar	Caddo Parish	LA	Hosston 69kV	AEP
GEN-2017-061	DISIS-2017-001	101.5	Solar	Mayes	ОК	GRDA1 to CLARMR 5 161kV	GRDA
GEN-2017-071	DISIS-2017-001	124.7	Solar	Payne	ОК	Greenwood 138kV	OGE
GEN-2017-075	DISIS-2017-001	200	Solar	Johnston	ОК	Hugo-Sunnyside 345 kV	OGE
GEN-2017-077	DISIS-2017-001	124.7	Solar	Mayes	ОК	Explorer Claremore Tap EXCLART4	AEP
GEN-2017-092	DISIS-2017-001	200	Solar	Muskogee	ОК	Canadian River-Muskogee and Muskogee-Seminole 345kV	OGE
GEN-2017-132	DISIS-2017-002	400	Wind	Oklahoma	ОК	Arcadia 345kV	OGE
GEN-2017-133	DISIS-2017-002	200	Wind	Oklahoma	ОК	Arcadia 345kV	OGE
GEN-2017-134	DISIS-2017-002	250	Wind	Oklahoma	ОК	Arcadia 345kV	OGE
GEN-2017-137	DISIS-2017-002	295	Wind	Oklahoma	ОК	Arcadia 345kV	OGE
GEN-2017-140	DISIS-2017-002	160	Solar	Wagoner	ОК	Clarksville 345kV	AEP
GEN-2017-141	DISIS-2017-002	241.7	Solar	Wagoner	ОК	Clarksville 345kV	AEP
GEN-2017-149	DISIS-2017-002	258	Wind	Johnston	ОК	Johnson County 345kV	OGE
GEN-2017-150	DISIS-2017-002	250	Solar	Grady	ОК	Minco 345kV	OGE
GEN-2017-151	DISIS-2017-002	300	Wind	Crosby	TX	TUCO-Oklaunion 345kV	SPS
GEN-2017-154	DISIS-2017-002	255	Wind	Johnston	ОК	Johnson County 345kV	OGE
GEN-2017-164	DISIS-2017-002	250	Solar	Garfield	ОК	Woodring 345kV	OGE
GEN-2017-171	DISIS-2017-002	150	Solar	Stephen	ОК	Lawton Eastside - Terry Road 345kV	AEP
GEN-2017-231	DISIS-2017-002	72.5	Solar	Franklin	AR	Branch 161kV	OGE
GEN-2017-233	DISIS-2017-002	215	Wind	Grady	ОК	Minco 345kV	OGE
GEN-2018-003	DISIS-2018-001	150	Solar	Bowie	TX	North Boston-Bann 138kV	AEP
GEN-2018-011	DISIS-2018-001	74.1	Battery	Kingfisher	ОК	Dover 138 kV	WFEC
GEN-2018-015	DISIS-2018-001	252	Solar	Paducah	TX	Tuco-Oklaunion 345kV	SPS
GEN-2018-021	DISIS-2018-001	74.1	Solar	Washita	ОК	Chisholm-Gracemont 345kV	AEP

Projects	Cluster	MW	Generation Type	Town or County	State	Substation or Line	TO at POI
GEN-2018-024	DISIS-2018-001	100	Battery	Muskogee	ОК	Canadian River-Muskogee and Muskogee-Seminole 345kV	OGE
GEN-2018-026	DISIS-2018-001	100	Battery	Canadian	ОК	Mustang 138kV	OGE
GEN-2018-027	DISIS-2018-001	100	Battery	Tulsa	ОК	Tulsa Power Station 138kV	AEP
GEN-2018-028	DISIS-2018-001	200	Battery	Tulsa	ОК	Tulsa North 138kV	AEP
GEN-2018-029	DISIS-2018-001	100	Battery	Oklahoma	ОК	Horseshoe Lake 138kV	OGE
GEN-2018-048	DISIS-2018-001	300	Solar	Caddo	ОК	Pecan Creek 345kV	OGE
GEN-2018-050	DISIS-2018-001	200	Solar	Caddo	LA	Longwood 345kV	AEP
GEN-2018-055	DISIS-2018-001	252	Solar	Grady	ОК	Terry Road 345kV	AEP

Table A-6: SPP DISIS 18-002 / 19-001 Generation Projects in MISO South

Project #	Town / County	State	Point of Interconnection	Generation Type	Pmax	SH (MW)	SPK (MW)
GEN-2018-064	Benton	AR	Tonnece 69 kV	Solar	80	0	80
GEN-2018-071	Kay	ОК	Ranch Road 345 kV	Battery	151	151	151
GEN-2018-072	Kay	ОК	Ranch Road 345 kV	Battery	151	151	151
GEN-2018-079	Craig / Novata	ОК	Farmland-Delaware 138 kV	Solar	148	0	148
GEN-2018-082	Pittsburg	ОК	Pittsburg 345 kV	Wind	215	215	33.54
GEN-2018-088	Bowie	TX	Lydia 345 kV	Solar	130	0	130
GEN-2018-106	Caddo	LA	Longwood 345 kV	Solar	165	0	165
GEN-2018-115	Lawton	ОК	Lawton East 345/138 kV	Solar / Storage	250	50	250
GEN-2019-002	Mayes	ОК	Maid 161 kV	Battery	100	100	100
GEN-2019-013	Roger Mills	ОК	Dempsey / Sweetwater 230 kV	Battery	50	50	50
GEN-2019-035	Barry	МО	Reeds Spring-Aurora 161 kV	Solar	80	0	80
GEN-2019-065	Smith	TX	Overton-Northwest Henderson 138 kV	Battery	180	180	180

A.3 AECI Prior Queued Generation Projects

Table A-7: AECI Prior Queued Generation Projects

Projects	MW	Generation Type	Town or County	State	Substation or Line	
GIA-61	230	Wind	Nodaway	МО	Maryville 161 kV	
GIA-83	1018	Wind	Randolph	МО	McCredie 345 kV	
GIA-86	100	Solar	Clifton Hill	МО	Thomas Hill 69 kV	
GIA-90	100	Solar	Randolph	МО	Montgomery City 161 kV	
GIA-91	96	Solar	Carroll	МО	Sedalia 69 kV	
GIA-93	100	Solar	Macon		Palmyra 161 kV	
GIA-95	247	Wind	Dade	МО	Jasper-Morgan 345 kV	
GIA-96	97.5	Wind	Lincoln	OK	Stroud 138kV	
GIA-099	470	CT Gas	Butler	МО	Gobbler Knob 345 kV	
GIA-100	40	CT Gas	Butler	МО	Gobbler Knob 345 kV	
GIA-101	460	CT Gas	Clinton	МО	Rockies Express 161 kV	
GIA-102	75	CT Gas	Clinton	МО	Rockies Express 161 kV	
GIA-103	460	CT Gas	Creek	ОК	Bristow 138 kV	
GIA-104	460	CT Gas	Payne	ОК	Stillwater 138 kV	
GIA-105	460	CT Gas	Osage	ОК	Cleveland 138 kV	

A.4 Removed Recently Retired MISO Generation

Table A-8: Removed Recently Retired MISO Generation in MISO South Area

Unit(s) Description	State	Power Flow Area	Bus Name	Bus Number	Unit ID	Derate To MW	Requested Change of Status
Teche Unit 3	LA	CLEC	G3TECHE	501823	1	0	Retirement
Baxter Wilson Unit 1	MS	EES	1B.WLSN U1	336801	18	0	Retirement
Waterford Unit 1	LA	EES	1WAT U1	336151	1	0	Retirement
Dolet Hills	LA	CLEC	G1DOLHIL	501801	1	330	Retirement
Sterlington 1-4 & 6-10	LA	LAGN	1KOCH U1	303010	1	0	Retirement
Sterlington 1-4 & 6-10	LA	LAGN	1KOCH U1	303010	2	0	Retirement
Sterlington 1-4 & 6-10	LA	LAGN	1KOCH U2	303011	1	0	Retirement
Sterlington 1-4 & 6-10	LA	LAGN	1KOCH U2	303011	2	0	Retirement
Sterlington 1-4 & 6-10	LA	LAGN	1KOCH U3	303012	1	0	Retirement
Sterlington 1-4 & 6-10	LA	LAGN	1KOCH U3	303012	2	0	Retirement
Sterlington 1-4 & 6-10	LA	LAGN	1KOCH U4	303013	1	0	Retirement
Sterlington 1-4 & 6-10	LA	LAGN	1KOCH U4	303013	2	0	Retirement
Sterlington 1-4 & 6-10	LA	LAGN	1KOCH U1	303010	1A	0	Retirement
Sabine Cogen	TX	EES	1BAYORU1	334740	1	0	Retirement
Sabine Cogen	TX	EES	1BAYORU2	334738	1	0	Retirement
Sabine Cogen	TX	EES	1BAYORU3	334739	1	0	Retirement
Nelson 4	LA	EES	1NELSON_G4!	335204	1	0	Retirement
Sterlington Unit 7C	LA	EES	1STERL_7C	337419	1	0	Retirement
Woodville Renewable Power Project	TX	EES	1WOODVILLE	334313	1	0	Retirement
Rex Brown 4 & 5	MS	EES-EMI	1REX BRWN U4	336944	1	0	Retirement
Rex Brown 4 & 5	MS	EES-EMI	1REX BRN U5	336941	1	0	Retirement
Dow GT300	LA	EES	1DOW_AEP_5!	335545	1	0	Retirement
Henderson Station	MS	EES-EMI	3GREENWOOD!	337054	1	0	Retirement
Henderson Station	MS	EES-EMI	3GREENWOOD!	337054	2	0	Retirement
Henderson Station	MS	EES-EMI	3GREENWOOD!	337054	3	0	Retirement
Henderson Station	MS	EES-EMI	3GREENWOOD!	337054	4	0	Retirement
Baxter Wilson 2	MS	EES-EMI	1B.WLSN U2	336831	1	0	Retirement
Rex Brown Plant Unit 3	MS	EES-EMI	1REX BRWN U3	336943	1	0	Retirement
Morrow Units 1 and 2	MS	SMEPA	MOR GEN 1	318600	1	0	Retirement

Unit(s) Description	State	Power Flow Area	Bus Name	Bus Number	Unit ID	Derate To MW	Requested Change of Status
Morrow Units 1 and 2	MS	SMEPA	MOR GEN 2	318601	1	0	Retirement

Table A-9: Removed Recently Retired MISO Generation in MISO Central Area

Unit(s) Description	State	Power Flow Area	Bus Name	Bus Number	Unit ID	Derate To MW	Requested Change of Status
Grand Tower Units 1-4	IL	AMIL	1GRTW 1	347170	1	0	Retirement
Grand Tower Units 1-4	IL	AMIL	1GRTW 2	347171	2	0	Retirement
Grand Tower Units 1-4	IL	AMIL	1GRTW 3	347168	3	0	Retirement
Grand Tower Units 1-4	IL	AMIL	1GRTW 4	347169	4	0	Retirement
Meramec CTG 2	МО	AMMO	1MER 6	345172	6	0	Retirement
Dallman Units 31 & 32	IL	CWLP	1DALMAN 31	343549	1	0	Retirement
Dallman Units 31 & 32	IL	CWLP	1DALMAN 32	343550	2	0	Retirement
Meramec CTG 1	МО	AMMO	1MER 5	345164	5	0	Retirement
Bailly Unit 10	IN	NIPS	17BAILLY-10	255246	10	0	Retirement
Coffeen Units 1 and 2	IL	AMIL	1COFFEN 1	346896	1	0	Retirement
Coffeen Units 1 and 2	IL	AMIL	1COFFEN 2	346897	2	0	Retirement
Hennepin Units 1 and 2	IL	AMIL	1HENNEPIN G1	349106	1	0	Retirement
Hennepin Units 1 and 2	IL	AMIL	1HENNEPIN G2	349107	Н	0	Retirement
Hennepin Units 1 and 2	IL	AMIL	1HENNEPIN G2	349107	L	0	Retirement
Havana Unit 6	IL	AMIL	1HAVANA G6	349121	6	0	Retirement
Duck Creek Unit 1	IL	AMIL	1DCK GEN1	349633	1	0	Retirement
Baldwin 3	IL	AMIL	1BALDWIN G3	349128	3	0	Retirement
Reid Unit1	KY	BREC	1REID1	340574	5	0	Retirement
Plant D7	МО	CWLD	2PLANT2	343051	7	0	Retirement
Northeast - NET Units 1 & 2	IN	SIGE	10NE_GT	253512	1	0	Retirement
Henderson Municipal Power & Light Units 1&2	KY	BREC	HMP&L1	340577	3	0	Retirement
Henderson Municipal Power & Light Units 1&2	KY	BREC	HMP&L2	340578	4	0	Retirement
Bailly 7 & 8	IN	NIPS	17BAILLY-7	255234	7	0	Retirement
Bailly 7 & 8	IN	NIPS	17BAILLY-8	255235	8	0	Retirement
Coleman 1,2,3	KY	BREC	COLEMAN1	340579	1	0	Retirement
Coleman 1,2,3	KY	BREC	COLEMAN2	340580	2	0	Retirement
Coleman 1,2,3	KY	BREC	COLEMAN3	340581	3	0	Retirement

A.5 MISO North for Power Balance

Table A-10. MISO North for Power Balance

Area #	Area Name
207	HE
208	DEI
210	SIGE
216	IPL
217	NIPS
218	METC
219	ITC
295	WEC
296	MIUP
314	BREC
315	HMPL
333	CWLD
356	AMMO
357	AMIL
360	CWLP
361	SIPC
362	GLH

Area #	Area Name
600	Xcel
608	MP
613	SMMPA
615	GRE
620	OTP
627	ALTW
633	MPW
635	MEC
661	MDU
663	BEPC-MISO
680	DPC
694	ALTE
696	WPS
697	MGE
698	UPPC
701	Classic Prior
740	MPC Prior

A.6 MISO South for Power Balance

Table A-11. MISO South for Power Balance

Area #	Area Name
326	EES-EMI
327	EES-EAI
332	LAGN
349	SMEPA
351	EES

Area #	Area Name
502	CLEC
503	LAFA
504	LEPA
700	South Prior

A.7 SPP Market for Power Balance

Table A-12. SPP Market for Power Balance

Area #	Area Name
515	SWPA
520	AEPW
523	GRDA
524	OKGE
525	WFEC
526	SPS
527	OMPA
531	MIDW
534	SUNC
536	WERE
541	KCPL

Area #	Area Name
542	KACY
544	EMDE
545	INDN
546	SPRM
640	NPPD
641	HAST
642	KACY
645	OPPD
650	LES
652	WAPA
659	BEPC-SPP

A.8 AECI for Power Balance

Table A-13. AECI for Power Balance

Area #	Area Name
330	AECI

A.9 Contingency Files used in MISO South AFSIS Analysis

Table A-14: List of Contingencies used in the MISO South AFSIS Analysis

Contingency File Name	Description
Automatic single element contingencies	Single element outages at buses 60 kV and above in the study region
MISO20_2025_SUMTA_P1_South.con	Specified category P1 contingencies in MISO South
MISO20_2025_SUMTA_P1_P2_P4_P5_NoLoadLoss_South.con	Specified category P1, P2, P4, P5 no load loss contingencies in MISO
MISO20_2025_SUMTA_P2_P4_P5_P6_P7_LoadLoss_South.con	Specified category P2, P4, P5, P6, P7 load loss contingencies in MISO
AECI-AMMO.CON	Specified category P1, P2 contingencies in AECI-AMMO
AECI-EES.con	Specified category P2, P3, P6 contingencies in AECI-EES

** DRAFT **		
	This page intentionally left blank.	

MISO South AFSIS Model Development for Steady-State Analysis

MISO West AFSIS Model Development for Steady-State and Stability Analysis

B.1 Recently Withdrawn Prior Queued Projects

Table B-1: Recently Withdrawn MISO West and Central Prior Queued Project

Prj#	Bus Number	Bus Name	ld	Status
J1042	40420	J1042 GEN 0.6300	PV	Withdrawn
J1043	40430	J1043 GEN 0.6500	1	Withdrawn
J1074	40740	J1074 GEN 0.6000	1	Withdrawn
J1225	42250	J1225 GEN 0.6300	1	Withdrawn
J1350	43500	J1350 GEN 0.6000	1	Withdrawn
J1353	43530	J1353 GEN 0.3850	1	Withdrawn
J1474	44740	J1474 GEN 0.6300	1	Withdrawn
J1497	44970	J1497 GEN 0.6300	1	Withdrawn
J1510	45100	J1510 GEN 0.6300	1	Withdrawn
J1567	45670	J1567 GEN 0.6300	1	Withdrawn
J1708	47080	J1708 GEN 0.6300	1	Withdrawn
J1735	47350	J1735 GEN 0.6300	1	Withdrawn
J897	88977	J897 G1 0.6900	W	Withdrawn
J897	88978	J897 G2 0.6900	W	Withdrawn

Table B-2: Recently Withdrawn SPP Prior Queued Project

Prj#	Status	Bus Number	Bus Name	ld
GEN-2016-063	TERMINATED	587433	G16-063-GEN10.6900	1
GEN-2017-008	WITHDRAWN	588533	G17-008-GEN10.6900	1
GEN-2017-008	WITHDRAWN	588537	G17-008-GEN20.6900	1
GEN-2017-024	WITHDRAWN	588683	G17-024-GEN10.6000	1
GEN-2017-055	WITHDRAWN	588943	G17-055-GEN10.5500	1

Prj#	Status	Bus Number	Bus Name	ld
GEN-2017-064	WITHDRAWN	589023	G17-064-GEN10.5500	1
GEN-2017-064	WITHDRAWN	589027	G17-064-GEN20.5500	1
GEN-2017-067	WITHDRAWN	589053	G17-067-GEN10.5500	1
GEN-2017-067	WITHDRAWN	589057	G17-067-GEN20.5500	1
GEN-2017-090	WITHDRAWN	589283	G17-090-GEN10.6900	1
GEN-2017-090	WITHDRAWN	589287	G17-090-GEN20.6900	1
GEN-2017-111	WITHDRAWN	762009	G17-111-GEN10.6300	1
GEN-2017-128	WITHDRAWN	761925	G17-128GEN1 0.6900	1
GEN-2017-148	WITHDRAWN	760896	G17-148GEN1 0.6900	1
GEN-2017-191	WITHDRAWN	761946	G17-191GEN1 0.6900	1
GEN-2017-216	WITHDRAWN	761043	G17-216GEN1 0.6900	1
GEN-2017-229	WITHDRAWN	761757	G17-229GEN1 0.6900	1
GEN-2018-008	WITHDRAWN	762540	G18-008-GEN10.6900	1
GEN-2018-008	WITHDRAWN	762543	G18-008-GEN20.6900	1
GEN-2018-012	WITHDRAWN	762507	G18-012-GEN10.6900	1
GEN-2018-030	WITHDRAWN	762661	G18-030GEN1 0.6600	1
GEN-2018-054	WITHDRAWN	762892	G18-054-GEN10.6600	1

Table B-3: Removed Withdrawn Generation Projects in DISIS 18-002 / 19-001

Prj#	Status	Bus Number	Bus Name	ld
GEN-2018-070	WITHDRAWN	763057	G18-070-GEN10.6900	1
GEN-2018-090	WITHDRAWN	763199	G18-090-GEN10.6450	1
GEN-2018-121	WITHDRAWN	763364	G18-121-GEN10.6450	1
GEN-2019-029	WITHDRAWN	763662	G19-029-GEN10.5500	1
GEN-2019-029	WITHDRAWN	763665	G19-029-GEN20.5500	1
GEN-2019-033	WITHDRAWN	763684	G19-033-GEN10.6600	1

B.2 SPP Prior Queued Generation Projects

Table B-4: SPP Prior Queued Generation Projects

Projects	Cluster	MW	Generation Type	Town or County	State	Substation or Line	TO at POI
ASGI-2017-013	NA	40	Wind	WAPA	ND	Wolsey 69 kV	WAPA
ASGI-2017-014	NA	40	Solar	NA	KS	Post Oak 34.5 kV	KCPL
ASGI-2018-003	NA	20	Solar	KCPL	KS	Appleton 69 kV	KCPL
ASGI-2018-006	NA	20	Solar	KCPL	KS	Metz 69 kV	KCPL
ASGI-2018-007	NA	20	Solar	KCPL	KS	Salisbury 161 kV	KCPL
ASGI-2018-010	NA	35	Solar	KCPL	KS	Pleasant Valley 161 kV	KCPL
ASGI-2018-011	NA	35	Solar	KCPL	KS	South Ottawa 161 kV	KCPL
GEN-2016-036	DISIS-2016-002-1	44.6	Wind	Chippewa	MN	Granite Falls 115 kV	WAPA
GEN-2016-074	DISIS-2016-002-1	200	Wind	Custer	NE	Sweetwater 345 kV	NPPD
GEN-2016-087	DISIS-2016-002-1	98.9	Wind	Campbell	SD	Bismark-Glenham 230 kV	WAPA
GEN-2016-094	DISIS-2016-002-1	200	Wind	Hyde	SD	Ft Thompson-Oahe 230 kV	WAPA
GEN-2016-115	DISIS-2016-002-1	300	Wind	Atchison	МО	Nebraska City-Mullen Creek 345 kV	GMO
GEN-2016-130	DISIS-2016-002-1	202	Wind	Mercer	ND	Leland Olds 345 kV	BEPC
GEN-2016-147	DISIS-2016-002-1	40	Solar	Cheyenne	NE	Sidney 115 kV	Tri-State
GEN-2016-151	DISIS-2016-002-1	202	Wind	Burke	ND	Tande 345 kV	BEPC
GEN-2017-004	DISIS-2017-001	201.6	Wind	Cloud	KS	Elm Creek-Summit 345 kV	ITCGP
GEN-2017-005	DISIS-2017-001	190	Wind	Bourbon / Crawford	ОК	Marmaton-Litchfield 161 kV	WERE
GEN-2017-009	DISIS-2017-001	302	Wind	Neoshoe	KS	Neosho-Caney River 345 kV	WERE
GEN-2017-010	DISIS-2017-001	200.1	Wind	Bowman	ND	Rhame 230 kV	BEPC
GEN-2017-014	DISIS-2017-001	300	Wind	Haakon	SD	Philip Tap 230 kV	WAPA
GEN-2017-048	DISIS-2017-001	300	Wind	Williams	ND	Neset 230 kV	BEPC
GEN-2017-060	DISIS-2017-001	149.4	Wind	Barton	МО	LaRussell Energy Center 161 kV	EDE
GEN-2017-082	DISIS-2017-001	149.4	Wind	Barton / Jasper	МО	Asbury Plant 161 kV	EDE
GEN-2017-094	DISIS-2017-001	200	Wind	Wessington / Hand	SD	Fort Thompson-Huron 230 kV	WAPA
GEN-2017-097	DISIS-2017-001	128	Solar	Pennington	SD	Underwood 115 kV	WAPA
GEN-2017-105	DISIS-2017-002	75	Wind	Burt	NE	Tekamah-Raun 161 kV	OPPD
GEN-2017-108	DISIS-2017-002	400	Solar	Henry	МО	Stillwell-Clinton 161 kV	KCPL

Projects	Cluster	MW	Generation Type	Town or County	State	Substation or Line	TO at POI
GEN-2017-115	DISIS-2017-002	244	Wind	Atchinson / Nodaway	МО	Holt County 345 kV	KCPL
GEN-2017-119	DISIS-2017-002	180	Wind	Cloud / Mitchell	KS	Elm Creek 345 kV	SUNC
GEN-2017-120	DISIS-2017-002	260	Wind	Dickinson / Marion	KS	Abilene Energy Center-Northview 115 kV	WERE
GEN-2017-125	DISIS-2017-002	252	Wind	Osage	KS	Swissvale 345 kV	WERE
GEN-2017-144	DISIS-2017-002	200	Wind	Holt, Antelope, Wheeler	NE	Holt County 345 kV	WAPA
GEN-2017-175	DISIS-2017-002	300	Wind	Turner	SD	Vfodnes-Utica Jct. 230 kV	WAPA
GEN-2017-181	DISIS-2017-002	300	Wind	Lancaster	NE	Tobias 345 kV	NPPD
GEN-2017-182	DISIS-2017-002	128	Wind	Lancaster	NE	Tobias 345 kV	NPPD
GEN-2017-183	DISIS-2017-002	400	Wind	Hodgeman / Ford	KS	Nashua-St. Joe 345 kV	KCPL
GEN-2017-184	DISIS-2017-002	400	Solar	Hodgeman / Ford	KS	Nashua-St. Joe 345 kV	KCPL
GEN-2017-188	DISIS-2017-002	130	Solar	Barry	МО	Asbury 161 kV	EDE
GEN-2017-195	DISIS-2017-002	500.4	Solar	Johnson	KS	West Gardner 345 kV	KCPL
GEN-2017-196	DISIS-2017-002	128	Battery	Johnson	KS	West Gardner 345 kV	KCPL
GEN-2017-201	DISIS-2017-002	250	Wind	Wayne	NE	Hoskins 345 kV	NPPD
GEN-2017-202	DISIS-2017-002	200	Solar	New Madrid	МО	New Madrid-Sikeston 161 kV	SWPA
GEN-2017-209	DISIS-2017-002	300	Hybrid (Solar / Battery)	McPherson	KS	LaCygne-Neosho 345 kV	KCPL
GEN-2017-210	DISIS-2017-002	310	Hybrid (Solar / Battery)	Cedar	NE	McCool 345 kV	NPPD
GEN-2017-214	DISIS-2017-002	100	Wind	Ward	ND	Logan 230 kV	BEPC
GEN-2017-215	DISIS-2017-002	100	Wind	Ward	ND	Logan 230 kV	BEPC
GEN-2017-222	DISIS-2017-002	180	Wind	Denison	IA	Denison 230 kV	WAPA
GEN-2017-234	DISIS-2017-002	115	Wind	Greeley	NE	Spalding-North Loup 115 kV	NPPD
GEN-2018-010	DISIS-2018-001	74.1	Battery	Montrail	ND	Neset 230 kV	BEPC
GEN-2018-013	DISIS-2018-001	74.1	Wind	Dickinson	KS	Abilene Energy Center-Northview 115 kV	WERE
GEN-2018-022	DISIS-2018-001	300	Solar	Nodaway	МО	Mullen Creek 345 kV	GMO
GEN-2018-025	DISIS-2018-001	200	Battery	Washington	NE	Fort Calhoun 345 kV	OPPD
GEN-2018-031	DISIS-2018-001	50	Battery	Jackson	МО	Blue Valley 161 kV	INDN

Projects	Cluster	MW	Generation Type	Town or County	State	Substation or Line	TO at POI
GEN-2018-032	DISIS-2018-001	310	Wind	McPhearson	KS	Neosho 345 kV	WERE
GEN-2018-033	DISIS-2018-001	200	Battery	Cass	NE	Cass County 345 kV	OPPD
GEN-2018-037	DISIS-2018-001	100	Battery	Douglas	NE	Looping in OPPD (S1211) (S1220) (S1211) (S1299) 161 kV	OPPD
GEN-2018-039	DISIS-2018-001	72	Solar	LaMoure	ND	Edgeley 115 kV	WAPA
GEN-2018-043	DISIS-2018-001	500	Solar	Burt	NE	Ft. Calhoun-Raun 345 kV	OPPD
GEN-2018-056	DISIS-2018-001	102.6	Solar	Knox / Holt	NE	Grand Prairie 345 kV	WAPA
GEN-2018-057	DISIS-2018-001	203.4	Solar	Sedgwick	KS	Gordon Evans 138 kV	WERE
GEN-2018-060	DISIS-2018-001	50	Wind	Webster	NE	Axtell-Post Rock 345 kV	NPPD
GEN-2018-062	DISIS-2018-001	75.6	Solar	Wyandotte	KS	Nearman 161 kV	KACY

Table B-5: SPP DISIS 18-002 / 19-001 Generation Projects in MISO West

Projects	Town / County	State	Point of Interconnection	Generation Type	Pmax	SH (MW)	SPK (MW)
GEN-2018-063	Greene	МО	Sedalia Marshfield Springfield Nichols Street 69kV	Solar	57	0	57.0
GEN-2018-065	Madison	NE	Antelope 345 kV	Wind	19.8	19.8	3.1
GEN-2018-067	Williams	ND	Strandahl 115kV	Wind	255	255	39.8
GEN-2018-068	Madison	NE	Antelope 345 kV	Wind	302.4	302.4	47.2
GEN-2018-069	Wibaux	MT	WAPA-UGP Mingusville 230kV	Wind	125	125	19.5
GEN-2018-074	Crawford and Carrol	IA	Denison 230kV Substation	Wind	78	78	12.2
GEN-2018-083	Madison	NE	Shell Creek-Hoskins 345kv	Wind	250	250	39.0
GEN-2018-125	Lincoln	NE	Gentleman-Sweetwater 345kV	Wind	231	231	36.0
GEN-2018-131	Pierce	NE	Antelope 345kV	Solar	221.4	0	221.4
GEN-2018-132	Pierce	NE	Antelope 345kV	Solar	201.6	0	201.6
GEN-2019-009	Nemaha	NE	S1263 Brock 161kV	Solar	100	0	100.0
GEN-2019-016	Polk and Dade	МО	Dadeville 161kV	Solar	200	0	200.0
GEN-2019-019	Sioux	IA	Siouxland 69kV	Thermal (CT)	15.15	0	15.2
GEN-2019-023	Wibaux	MT	WAPA-UGP Mingusville 230kV	Wind / Storage	110	110	67.16

Projects	Town / County	State	Point of Interconnection	Generation Type	Pmax	SH (MW)	SPK (MW)
GEN-2019-037	Mercer	ND	Leland Olds 345kV	Solar	150	0	150.0
GEN-2019-039	Butler	NE	Columbus Southeast-Rising City 115kV	Solar	174.5	0	174.5
GEN-2019-041	Lancaster	NE	Monolith 115kV	Solar	78	0	78.0
GEN-2019-048	Jackson	МО	Duncan 69kV	Battery	50	50	50.0
GEN-2019-069	Madison	NE	Shell Creek-Hoskins 345kV	Solar	100	0	100.0
GEN-2019-070	Madison	NE	Shell Creek-Hoskins 345kv	Solar	50	0	50.0
GEN-2019-073	Madison	NE	Shell Creek-Hoskins 345kv	Solar	100	0	100.0

B.3 MPC Prior Queued Generation Projects

Table B-6: MPC Prior Queued Generation Projects

Projects	Cluster	MW	Generation Type	Town or County	State	Substation or Line	TO at POI
MPC03600	MPC Group 2020	170	Solar	Richland	ND	Frontier-Wahpeton 230 kV	MPC
MPC03700	MPC Group 2020	130	Solar	Richland	ND	Frontier-Wahpeton 230 kV	MPC
MPC03800	MPC Group 2021	250	Wind	Eddy; Wells	ND	Center-Prairie 345 kV	MPC
MPC03900	MPC Group 2021	151.2	Wind	Eddy; Wells	ND	Center-Prairie 345 kV	MPC
MPC04000	MPC Group 2021	284	Wind	Oliver; Morton	ND	Square Butte 230 kV	MPC
MPC04300	NA	400	Wind	Steele	ND	Center-Prairie 345 kV	MPC

B.4 AECI Prior Queued Generation Projects

Table B-7: AECI Prior Queued Generation Projects

Projects	MW	Generation Type	Town or County	State	Substation or Line
GIA-61	230	Wind	Nodaway	МО	Maryville 161 kV
GIA-83	1018	Wind	Randolph	МО	McCredie 345 kV
GIA-86	100	Solar	Clifton Hill	МО	Thomas Hill 69 kV
GIA-90	100	Solar	Randolph	МО	Montgomery City 161 kV
GIA-91	96	Solar	Carroll	МО	Sedalia 69 kV
GIA-93	100	Solar	Macon		Palmyra 161 kV
GIA-95	247	Wind	Dade	МО	Jasper-Morgan 345 kV
GIA-96	97.5	Wind	Lincoln	ОК	Stroud 138kV
GIA-099	470	CT Gas	Butler	МО	Gobbler Knob 345 kV
GIA-100	40	CT Gas	Butler	МО	Gobbler Knob 345 kV
GIA-101	460	CT Gas	Clinton	МО	Rockies Express 161 kV
GIA-102	75	CT Gas	Clinton	МО	Rockies Express 161 kV

B.5 Removed Recently Retired MISO Generation

Table B-8: Removed Recently Retired MISO Generation in MISO West & Central Area

Unit(s) Description	State	Power Flow Area	Bus Name	Bus Number	Unit ID	Derate To MW	Requested Change of Status
Genoa Unit 3	WI	DPC	GENOA53G	681522	3	0	Retirement
Grand Tower Units 1-4	IL	AMIL	1GRTW 1	347170	1	0	Retirement
Grand Tower Units 1-4	IL	AMIL	1GRTW 2	347171	2	0	Retirement
Grand Tower Units 1-4	IL	AMIL	1GRTW 3	347168	3	0	Retirement
Grand Tower Units 1-4	IL	AMIL	1GRTW 4	347169	4	0	Retirement
Riverside Unit 5	IA	MEC	RIVERSIDE 5G	636655	5	0	Retirement
Meramec CTG 2	МО	AMMO	1MER 6	345172	6	0	Retirement
Elk River Station	MN	GRE	GRE-ELK RIV869	615020	1	0	Retirement
Elk River Station	MN	GRE	GRE-ELK RIV869	615020	2	0	Retirement
Elk River Station	MN	GRE	GRE-ELK RIV869	615020	3	0	Retirement
Dallman Units 31 & 32	IL	CWLP	1DALMAN 31	343549	1	0	Retirement
Dallman Units 31 & 32	IL	CWLP	1DALMAN 32	343550	2	0	Retirement
Meramec CTG 1	МО	AMMO	1MER 5	345164	5	0	Retirement
Bailly Unit 10	IN	NIPS	17BAILLY-10	255246	10	0	Retirement
Coffeen Units 1 and 2	IL	AMIL	1COFFEN 1	346896	1	0	Retirement
Coffeen Units 1 and 2	IL	AMIL	1COFFEN 2	346897	2	0	Retirement
Hennepin Units 1 and 2	IL	AMIL	1HENNEPIN G1	349106	1	0	Retirement
Hennepin Units 1 and 2	IL	AMIL	1HENNEPIN G2	349107	Н	0	Retirement
Hennepin Units 1 and 2	IL	AMIL	1HENNEPIN G2	349107	L	0	Retirement
Havana Unit 6	IL	AMIL	1HAVANA G6	349121	6	0	Retirement
Duck Creek Unit 1	IL	AMIL	1DCK GEN1	349633	1	0	Retirement
Baldwin 3	IL	AMIL	1BALDWIN G3	349128	3	0	Retirement
Reid Unit1	KY	BREC	1REID1	340574	5	0	Retirement
Bay Front Unit 4	WI	XEL (NSP)	BFTG4DSG	600016	4	0	Retirement
Plant D7	МО	CWLD	2PLANT2	343051	7	0	Retirement
Northeast - NET Units 1 & 2	east - NET Units 1 & 2 IN SIGE 10NE_GT		10NE_GT	253512	1	0	Retirement
Henderson Municipal Power & Light Units 1&2	· · · · · · · · · · · · · · · · · · ·		HMP&L1	340577	3	0	Retirement
Henderson Municipal Power & Light Units 1&2	KY	BREC	HMP&L2	340578	4	0	Retirement

Unit(s) Description	State	Power Flow Area	Bus Name	Bus Number	Unit ID	Derate To MW	Requested Change of Status
FibroMinn	MN	OTP	FIBROMN7	603185	1	0	Retirement
Bailly 7 & 8	IN	NIPS	17BAILLY-7	255234	7	0	Retirement
Bailly 7 & 8	IN	NIPS	17BAILLY-8	255235	8	0	Retirement
Coleman 1,2,3	KY	BREC	COLEMAN1	340579	1	0	Retirement
Coleman 1,2,3	KY	BREC	COLEMAN2	340580	2	0	Retirement
Coleman 1,2,3	KY	BREC	COLEMAN3	340581	3	0	Retirement
Flambeau CT	WI	XEL (NSP)	FLAMSTN9	605465	1	0	Retirement
Wheaton Unit 5	WI	XEL (NSP)	WHT 55G	600036	5	0	Retirement
Hoot Lake 1	MN	OTP	HOOT LK7	620223	1	0	Retirement
Silver Lake 1, 2, 3 & 4	MN	MMPA	SILVER L	625440	1	0	Retirement
Silver Lake 1, 2, 3 & 4	MN	MMPA	SILVER L	625440	2	0	Retirement
Silver Lake 1, 2, 3 & 4	4 MN MMPA SILVER L		SILVER L	625440 3 0		0	Retirement
Silver Lake 1, 2, 3 & 4	& 4 MN MMPA SILVER L		SILVER L	625440	4	0	Retirement
Stoneman 1 & 2	WI	DPC	STONE	186860	1	0	Retirement

B.6 Network Upgrades Required for Prior Queued Projects

Table B-9: NUs Required for SPP West Projects Prior to DISIS 18-002 / 19-001 Cycle

NUs	Study Cycle
Capacitor at Bagley 115: 1x20 Mvar	DISIS-2016-002
100 MVAR Capacitor Bank at Montezuma 345 kV (MEC)	DISIS-2017-001
100 MVAR Capacitor Bank at Blackhawk 345 kV (MEC)	DISIS-2017-001
40 MVar switched cap at Wahpeton 230 kV (620329) ¹	DISIS-2017-001
60 MVar switched cap at Buffalo 345 kV (620358) 1	DISIS-2017-001
Capacitor at Maynard 115: 1x40 Mvar	DISIS-2018-001

Note 1: NU was only modeled in summer shoulder cases

Table B-10: NUs Required for SPP West Projects in DISIS 18-002 / 19-001 Cycle

Network Upgrades	Owner	Study Cycle	Comments
Build a 2nd Astoria-Brookings County 345 kV line	ОТР	DPP 2019 West OTP LPC	Only in SH case
Build Brookings Co-Lyon Co 2nd 345 kV line; Build Helena-Hampton Corner 345 kV line	XEL	MTEP Appendix A	Only in SH case
±150 MVAr STATCOM at Wahpeton 230 kV (620329)	ОТР	MPC04300 MPC NU	Only in SH case
4x40 MVar switched cap at Panther 230 kV (615529)	GRE	DISIS 18-002 / 19-001	Only in SH case
4x40 MVar switched cap at McLeod 230 kV (658276)	MRES	DISIS 18-002 / 19-001	Only in SH case
1x40 MVar switched cap at Paynesville 230 kV (602036)	XEL	DISIS 18-002 / 19-001	Only in SH case
±150 MVAr STATCOM at Audubon 230 (620336)	ОТР	MPC04300 MPC NU	Only in SH case

Table B-11: NUs Required for MPC Group 2021 Projects

Bus#	Bus Name	MPC Group 2021
658047	ALEXMRES3 345.00	MSC: 1x75 MVar
601067	BISON 3 345.00	MSC: 2x75 MVar (additions. Total is 3 x 75 MVar)
657758	WINGER 4 230.00	MSC: 1x30 MVar STATCOM: ±50 MVar

Table B-12: NUs Required for MPC 04300 Project

NUs	Comments
New 345 kV outlet line from MPC04300 to a new substation tapping the Buffalo-Jamestown 345 kV line.	Stability NU
Drayton 230 (657752) 2x40 MVar MSC	Steady State NU (only in SH case)
Jamestown 345 (620369) 4x75 MVar MSC	Steady State NU (only in SH case)
Maple River 230 (657754) 2x40 MVar MSC	Steady State NU (only in SH case)
Winger 230 (657758) 1x30 MVar MSC (addition)	Steady State NU (only in SH case)

B.7 Contingency Files used in MISO West AFSIS Analysis

Table B-13: List of Contingencies used in the MISO West AFSIS Analysis

Contingency File Name	Description
Automatic single element contingencies	Single element outages at buses 60 kV and above in the study region
MISO20_2025_SUMTA_P1_AMRN.con	Specified category P1 contingencies in Ameren
MISO20_2025_SUMTA_P1_IOWA.con	Specified category P1 contingencies in Iowa
MISO20_2025_SUMTA_P1_IOWA_ITCM_MPW.con	Specified category P1 contingencies in ITCM and MPW
MISO20_2025_SUMTA_P1_IOWA_MEC.con	Specified category P1 contingencies in MEC
MISO20_2025_SUMTA_P1_MINN-DAKS.con	Specified category P1 contingencies in MN, ND and SD
HVDC_Red_2025PK.con	Specified contingencies related to HVDC reduction in SPK
HVDC_Red_2025SH.con	Specified contingencies related to HVDC reduction in SH
MISO20_2025_SUMTA_P1_P2_P4_P5_NoLoadLoss.con	Specified category P1, P2, P4, P5 contingencies in MISO
MISO20_2025_SUMTA_P2_P7_MEC.con	Specified category P2, P7 contingencies in MEC
MISO20_2025_SUMTA_P2_P4_P5_P6_P7_LoadLoss.con	Specified category P2, P4, P5, P7 contingencies in MISO
AECI-AMMO.CON	Specified category P1, P2 contingencies in AECI-AMMO
AECI-EES.con	Specified category P2, P3, P6 contingencies in AECI-EES
160303-KACY_P1.con	Specified category P1 contingencies in KACY
160303-KACY_P2.con	Specified category P2 contingencies in KACY
KCPL_P1.con	Specified category P1 contingencies in KCPL
KCPL_P2.con	Specified category P2 contingencies in KCPL
KCPL_P4.con	Specified category P4 contingencies in KCPL
KCPL_P5.con	Specified category P5 contingencies in KCPL
KCPL_P7.con	Specified category P7 contingencies in KCPL

** DRAFT **		
	-	
	This page intentionally left blank.	

MISO West AFSIS Model Development for Steady-State and Stability Analysis

MISO South AFSIS Thermal and Voltage Analysis Results

C.1 2025 Summer Peak (SPK) MISO South AFSIS Constraints

Table C-1. 2025 SPK System Intact MISO South Thermal Constraints

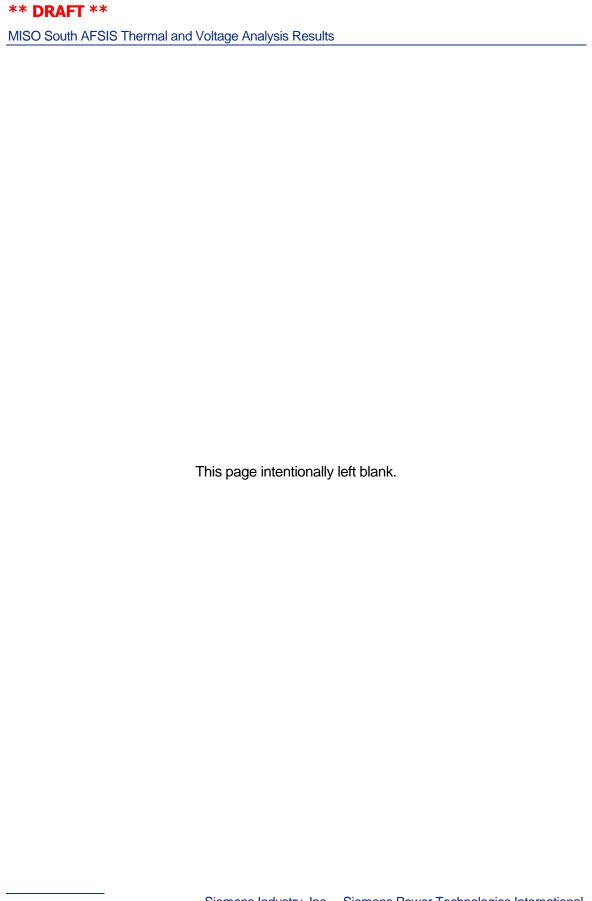

Table C-2. 2025 SPK System Intact MISO South Voltage Constraints

Table C-3. 2025 SPK Category P1 MISO South Thermal Constraints

Table C-4. 2025 SPK Category P1 MISO South Voltage Constraints

Table C-5. 2025 SPK Category P2-P7 MISO South Thermal Constraints

Table C-6. 2025 SPK Category P2-P7 MISO South Voltage Constraints

C.2 2025 Summer Shoulder (SH) MISO South AFSIS Constraints

Table C-7. 2025 SH System Intact MISO South Thermal Constraints

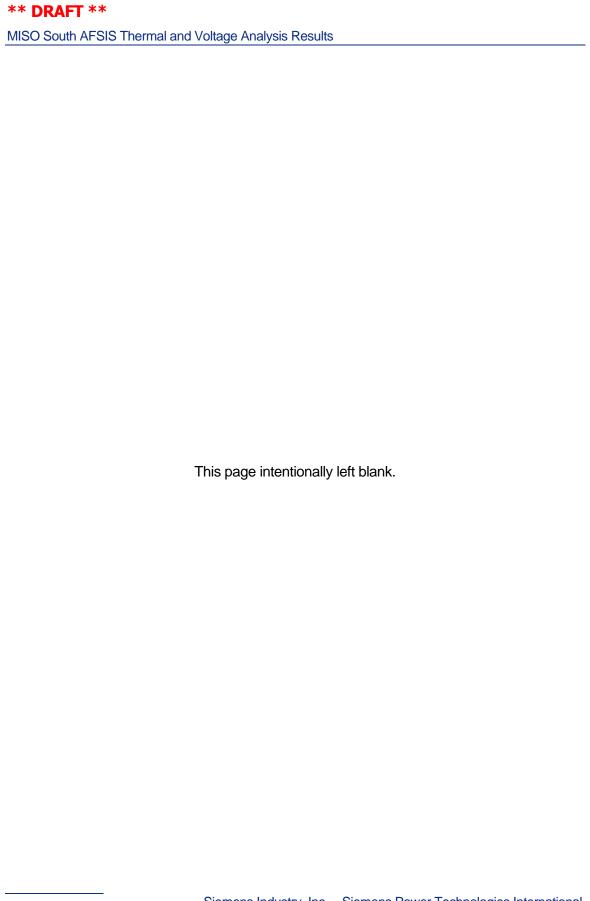

Table C-8. 2025 SH System Intact MISO South Voltage Constraints

Table C-9. 2025 SH Category P1 MISO South Thermal Constraints

Table C-10. 2025 SH Category P1 MISO South Voltage Constraints

Table C-11. 2025 SH Category P2-P7 MISO South Thermal Constraints

Table C-12. 2025 SH Category P2-P7 MISO South Voltage Constraints

MISO South AFSIS Stability Analysis Results

D.1 2025 Summer Peak (SPK) MISO South AFSIS Stability Results

Stability simulation was performed in the 2025 summer peak (SPK) stability model.

D.1.1 2025 SPK MISO South AFSIS Stability Summary

MISO South AFSIS summer peak stability study results are summarized in Table D-1.

Table D-1: 2025 Summer Peak MISO South AFSIS Stability Analysis Results Summary

MISO South AFSIS Stability Analysis Results

D.1.2 2025 SPK MISO South AFSIS Stability Plots

Plots of stability simulations for 2025 summer peak study case are in separate files which are listed below:

AppendixD1-2_2025SPK_SPP South_Study_Plots.zip

MISO South AFSIS Stability Analysis Results

D.2 2025 Summer Shoulder MISO South AFSIS Stability Results

Stability simulation was performed in the 2025 summer shoulder (SH) stability model.

D.2.1 2025 SH MISO South AFSIS Stability Summary

MISO South AFSIS summer shoulder stability study results are summarized in Table D-2.

Table D-2: 2025 Summer Shoulder MISO South AFSIS Stability Analysis Results Summary CEII Redacted

D.2.2 2025 SH MISO South AFSIS Stability Plots

Plots of stability simulations for 2025 summer shoulder study case are in separate files which are listed below:

AppendixD2-2_2025SH_SPP South_Study_Plots.zip

MISO West AFSIS Thermal and Voltage Analysis Results

E.1 2025 Summer Peak (SPK) MISO West AFSIS Constraints

Table E-1. 2025 SPK System Intact MISO West Thermal Constraints

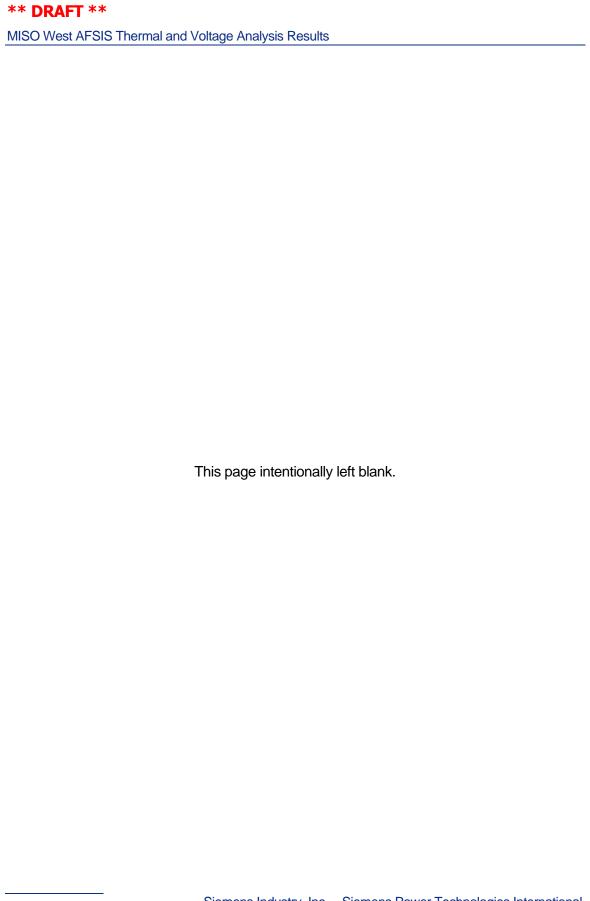

Table E-2. 2025 SPK System Intact MISO West Voltage Constraints

Table E-3. 2025 SPK Category P1 MISO West Thermal Constraints

Table E-4. 2025 SPK Category P1 MISO West Voltage Constraints

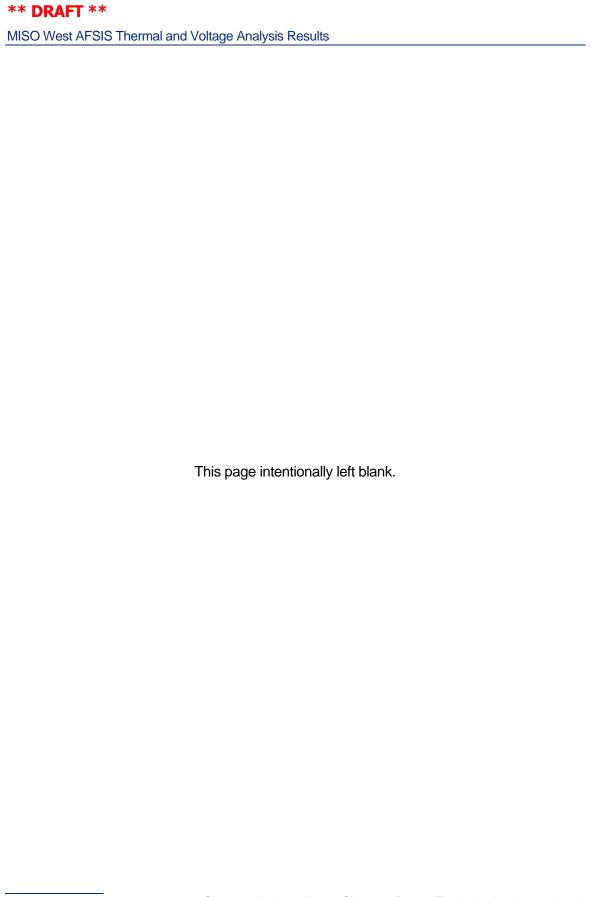

Table E-5. 2025 SPK Category P2-P7 MISO West Thermal Constraints

Table E-6. 2025 SPK Category P2-P7 MISO West Voltage Constraints

E.2 2025 Summer Shoulder (SH) MISO West AFSIS Constraints

- Table E-7. 2025 SH System Intact MISO West Thermal Constraints
- Table E-8. 2025 SH System Intact MISO West Voltage Constraints
- Table E-9. 2025 SH Category P1 MISO West Thermal Constraints
- Table E-10. 2025 SH Category P1 MISO West Voltage Constraints
- Table E-11. 2025 SH Category P2-P7 MISO West Thermal Constraints
- Table E-12. 2025 SH Category P2-P7 MISO West Voltage Constraints
- Table E-13. 2025 SH MISO West Non-Converged Contingencies
- Table E-14. 2025 SH MISO West Non-Converged Contingencies DCCC Results

MISO West AFSIS Stability Analysis Results

F.1 2025 Summer Peak (SPK) MISO West AFSIS Stability Results

Stability simulation was performed in the 2025 summer peak (SPK) stability model.

F.1.1 2025 SPK MISO West AFSIS Stability Summary

MISO West AFSIS summer peak stability study results are summarized in Table F-1.

Table F-1: 2025 Summer Peak MISO West AFSIS Stability Analysis Results Summary

MISO West AFSIS Stability Analysis Results

F.1.2 2025 SPK MISO West AFSIS Stability Plots

Plots of stability simulations for 2025 summer peak study case are in separate files which are listed below:

AppendixF1-2_2025SPK_SPP West_Study_Plots.zip

MISO West AFSIS Stability Analysis Results

F.2 2025 Summer Shoulder MISO West AFSIS Stability Results

Stability simulation was performed in the 2025 summer shoulder (SH) stability model.

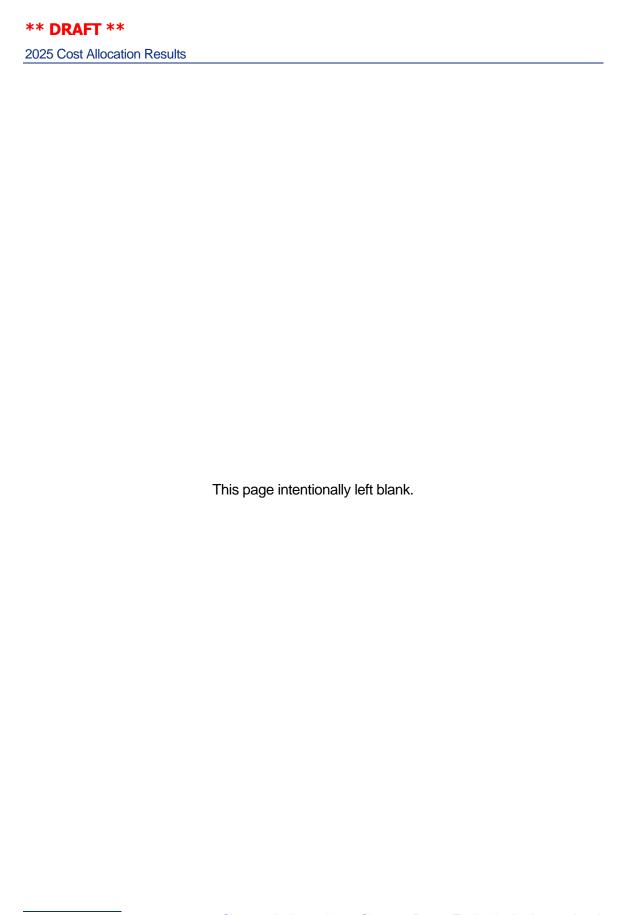
F.2.1 2025 SH MISO West AFSIS Stability Summary

MISO West AFSIS summer shoulder stability study results are summarized in Table F-2.

Table F-2: 2025 Summer Shoulder MISO West AFSIS Stability Analysis Results Summary CEII Redacted

F.2.2 2025 SH MISO West AFSIS Stability Plots

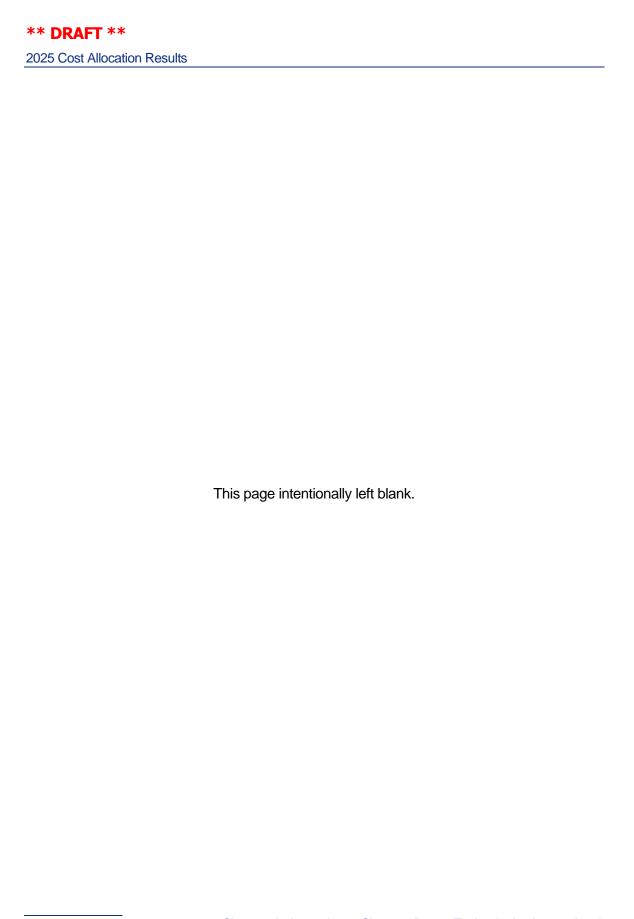
Plots of stability simulations for 2025 summer shoulder study case are in separate files which are listed below:


AppendixF2-2_2025SH_SPP West_Study_Plots.zip

2025 Cost Allocation Results

G.1 Distribution Factor (DF), Voltage Impact, and MW Contribution Results for Cost Allocation in 2025

Table G-1: Distribution Factor and MW Contribution on Constraints for MISO West Affected System Thermal NU Cost Allocation



G.2 Cost Allocation Details

Table G-2: MISO West Affected System Network Upgrades Cost Allocation

				Cost Allocati	

																			Table G-2: MI	SO West Aff	ected System N	letwork Upgra	ades Cost Alle	cation																				
Monitored Element 65700 NEW SUB 345 620358 BUFFALO3 345 1	English Name	Owner Co	at ASGI	-2020-001 A9GI-202	20-003 GEN-20	20-001 GEN-20	20-002 GEN	-2020-006 G	EN-2020-007	GEN-2020-008	GEN-2020-011	GEN-2020-013 GES	-2020-014 GEN	2020-021 GEN-20	020-025 GEN-2	1020-027 GE	N-2020-028 (ZEN-2020-030	GEN-2020-031 GEN	1-2020-033 GEN	-2020-036 GEN-202	10-038 GEN-2020-	0-043 GEN-2020-0	GEN-2020-0-	45 GEN-2020-05	56 GEN-2020-	057 GEN-2020-058	GEN-2020-061 GEN	-2020-064 GEN-2	020-069 GEN-202	20-070 GEN-2020-1	771 GEN-2020-0	72 GEN-2020-07	3 GEN-2020-076	GEN-2020-077	EN-2020-078 GEN-2	20-079 GEN-20	020-083 GEN-2020	-084 GEN-2020-01	6 GEN-2020-0	IS GEN-2020-08	9 GEN-2020-090	GEN-2020-091	GEN-2020-094 Upgrade for
65700 NEW SUR 345 620358 BUFFALO3 345 1	New Sub - Buffalo 345 kV	OTP MPC	50	50	\$0	50	\$0	50	50	\$0	50	\$0	50	\$0	50	\$0	50	50	\$0	50	\$0	50	50	\$0	\$0	50	50 51	50	\$0	50	\$0	\$0	50	so s	50	50	\$0	50	\$0	50	\$0	\$0 50	50	50 SH
602006 SHEYEME4 230 620337 LAKE PARK T4 230 1	Sheyenne-Lake Park 230 kV	MPC OTP	400,000	50	50	50	\$0	50	50	\$0	\$0	\$0	50	\$400,000	50	\$0	50	50	\$0	50	\$0	50	\$0	50	\$0	\$0	50 51	50	\$0	\$0	\$0	50	\$0	\$0 \$	\$0	\$0	50	50	\$0	\$0	50	50 50	\$0	50 SR
620336 AUDURON4 230 620337 LAKE PARK T4 230 1	Audubon-Lake Park 230 kV	OTP	50	50	\$0	50	50	\$0	50	\$0	50	50	50	\$0	50	\$0	50	50	50	50	50	50	50	\$0	50	\$0	50 50	50	\$0	50	50	50	50	50 5	50	50	\$0	50	\$0	50	50	\$0 50	\$0	50 59
Total Cost Per Project for each Project	Total Cost Per Project		400,000	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$400,000	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0 \$1	0 \$0	\$0	\$0	\$0	\$0	\$0	\$0 \$	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0 \$0	\$0	50

Siemens Industry, Inc.
Siemens Power Technologies International
10900 Wayzata Boulevard

Minnetonka, Minnesota 55305 USA

Tel: +1 (952) 607-2270 • Fax: +1 (518) 346-2777

www.siemens.com/power-technologies